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Executive Summary 
This document reports the comprehensive industrial pilot area validation, benchmarking, 
and KPI assessment related to process operations within the RE4DY project. It focuses on 
full-scale implementations, industrial trials, and performance monitoring of two major 
pilots GF Fraisa and Avio Aero. Each pilot integrates advanced AI and digital technologies 
following the RE4DY reference architecture to address key business scenarios such as 
tool selection and virtual process preparation, tool lifetime prediction through federated 
learning, machine maintenance via predictive analytics, and adaptive digital 
manufacturing using in-process metrology. 

GF Fraisa pilot demonstrates successful integration of the FRAISA ToolExpert with Siemens 
NX CAM for tool and process preparation, yielding reduced setup times, fewer errors, and 
optimized energy consumption. Advanced AI applications developed by CORE and Atlantis 
leverage on federated learning to deliver predictive maintenance and tool wear prediction, 
achieving up to 80-83% accuracy and promising further improvements. Machine 
maintenance applications monitor critical components with AI models to predict failures, 
enhancing machine uptime by 10-15% and reducing maintenance costs by up to 30%. The 
Adaptive Digital Manufacturing pilot employs in-process metrology, enabling closed-loop 
control that slashes machine verification time and production scrap rate, while improving 
cycle times. 

Avio Aero pilot introduced automated defect detection leveraging state-of-the-art deep 
learning (YOLOv8) under constrained datasets. Despite data limitations and annotation 
challenges, models exhibit potential for effectively detecting even subtle surface defects. 
The pilot also includes explainable AI features and a cognitive training suite to enhance 
inspector performance and reduce training hours. Furthermore, predictive quality and 
maintenance frameworks based on federated learning have been deployed successfully, 
delivering measurable impacts on Overall Equipment Effectiveness (OEE) in manufacturing 
using EDM machines. 

The 6P Performance Monitoring Framework is applied to systematically monitor digital 
maturity and performance impact across technical and socio-business dimensions in 
both pilots. Survey and interview results reveal significant progress in process integration, 
data sharing, federated learning adoption, and KPI achievement, although barriers such as 
cybersecurity constraints, data standardization, and infrastructure heterogeneity remain. 
Lessons learned emphasize the importance of standardized data models, robust digital 
threads, scalable federated learning architectures, and sustained cross-organizational 
collaboration. 

  



D5.3. Industrial pilot area validation  
& pilot benchmark and KPIs_Process Operations 

 Horizon Europe Grant Agreement ID: 101058384 
Page 10 of 141 

 

1 Introduction   

Context and scope of this document 
This document reports the industrial pilot area validation of work package five of RE4DY 
project. The full scale-up implementation of the industrial pilots (AVIO AERO and GF) has 
been fully described in this deliverable including establishment of final architecture and 
integration of it to the industrial environment as well as reporting the revised KPIs related 
to each business scenario leveraging on RE4DY reference architecture. In section 4 the 
outputs of task 5.4 has been depicted introducing the POLIMI performance monitoring 
methodology and its two iterations and insights of the pilots on project concepts and 
reference architecture. 

Relationships among other deliverables 
This deliverable is closely related to D5.2 “Scale up & on-site validation & revised KPI 
assessment: Process Operations” and its related deliverables in WP2 and WP3 of the 
project. In addition, this document is well connected with D4.3 of WP4 titled “Industrial pilot 
area validation & pilot benchmark and KPIs_process engineering” and some are of the 
section are closely aligned. 
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2 Pilot 3: GF Fraisa 
 

General Introduction 
The GF Fraisa pilot implements services for virtual machining preparation, tool lifetime and 
machine maintenance management as well as part quality control and overall 
optimisation for the case of milling technologies. The pilot is centred on the machine and 
tools, but as the scenario is deployed across the tool and machine lifecycle for high 
productivity and high precision applications, business process related to virtual planning 
and adaptive manufacturing and quality control are included. The challenges addressed 
are the following: 

1. Selection of best tools for a given part manufacturing, with virtual simulation of 
manufacturing KPIs 

2. Individual tool lifecycle management with AI prediction of tool wear for optimized 
tool recycling 

3. Predictive maintenance of key machine components for guaranteeing high 
precision and maximize uptimes 

4. On machine quality control of manufactured parts for adaptive manufacturing 
 

Those challenges are associated with the corresponding business processes (BP):  

BP1 – Process Planning and Preparation 

• Objective: Tool information available with CAM and machine conditions for process 
planning & simulation. 

• Benefit: Selection of best tools and strategies for optimized machining processes.  
 

BP2 – Tool Management and recycling 

• Objective: Tool data integration for machine operation and Monitoring of tool status 
and timed recovery and refurbishing of tools with predictive solutions. 

• Benefit: increased recycling and timely refurbishing of tools via predictive insights 
 

BP3 – Machine Maintenance 

• Objective: Maintenance of critical machine components. 
• Benefit: Monitoring of component status and timed warning, repairing or 

refurbishing process with predictive solutions. 
 

BP4 – Adaptive Digital Manufacturing 

• Objective: Machine Verification using metrology and advanced part alignment. 
• Benefit: Automated in-machine metrology and feedback. 
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The following picture (Figure 1) represents the architecture of the pilot for all the business 
processes, requiring specific modules related to federated learning FEDMA and FPdM as 
specific application for predictive maintenance. 

  

 

Figure 1 – General architecture of GF pilot showing the RE4DY toolkit elements deployed across four 
business processes  

The Data Container 

A central achievement of the pilot was its ability to bridge and connect previously isolated 
data silos, solutions, and processes across the machine tool ecosystem. The core 
motivation behind this effort is simple: by bringing data from multiple sources into a unified 
environment, stakeholders can unlock new types of value-added services that would be 
impossible to implement in isolation. For example, the work done by Atlantis and Core 
demonstrates how combining machining and tool data enables advanced predictions 
about tool and machine condition. 

Rather than functioning as a traditional data container in the strict sense, the solution 
developed acts more as a data aggregation and orchestration layer. Its design is flexible, 
data storage and access can be adapted based on the specific requirements of a use 
case, whether that involves a data connector, a container, or a marketplace interface. 

In the current setup, its primary role is to interface with various data sources: reaching 
edge devices on machines to extract operational data, identifying which tools were used 
via integrated solutions, retrieving corresponding part file information, and finally 
aggregating metrology and quality control data at the end of the process. This 
comprehensive aggregation enables researchers to conduct end-to-end analysis: for 
example, examining how specific process conditions influence tool wear, and how that 
wear, in turn, affects final part tolerances. 

This holistic view, from engineering through to quality control, is the key value of the 
system, enabling full traceability and insight across the production process. Looking 
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ahead, it would be valuable to expand this scope further by incorporating lifecycle data of 
the product post-factory or during its return, closing the loop for circular manufacturing. 

2.a Business Scenario 1: 
This business scenario focuses on the virtual preparation of the machining process, 
integrating the Fraisa ToolExpert application in the NX CAD CAM for the best choice of the 
tool configuration given a 3D model specification, and the virtual manufacturing of the part, 
which helps to avoid collisions and verify if the full program is consistent with the 
requirements prior to machining. 

2.a.1 Full-scale implementation 
ToolExpert integrated in Siemens CAM NX 

FRAISA ToolExpert is now seamlessly integrated into Siemens CAM NX as shown in Figure 2. 

Initially, users could transfer tool geometry data with just a few clicks – now, cutting data can be 

transferred just as easily. The FRAISA ToolExpert is now an integrated vendor in the Cloud Connect Tool 

Manager in Siemens NX. 

 

Figure 2 – ToolExpert integrated in Siemens NX 

 

Once the tool is chosen the geometrical tool data can be sent to the CAM with one button 
as can be seen in Figure 3.  
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Figure 3 – Geometrical data send to NX Tool Only Product Data 

 

If the workpiece material and milling strategy are chosen as well, the recommended 
cutting data can be sent to the CAM as well (Figure 4). 

 

Figure 4 – Cutting data Send to NX Tool 

When the tool is sent to the CAM tool-library, the package (tool geometry data and cutting 
data) can be transferred to the NX jobs. The tool in the tool-library is shown in Figure 5.  
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Figure 5 – Transfer tool geometry data and cutting data to NX jobs 

 

Afterwards, the tool with the exact geometrical data and the recommended cutting data is 
in the Operations Navigator from NX (Figure 6). 

 

Figure 6 – Geometrical data and cutting data in Operations Navigator 

In the example of the RE4DY drone component, four tools with geometry and cutting data 
must be integrated into the CAM system. Thanks to the integrated ToolExpert, this can be 
done quickly and reliably. 

Virtual Environment  

As illustrated in Figure 7, virtual simulation, conducted within the Run MyVirtual Machine or 
Create MyVirtual Machine software environments, integrates the designed workpiece 
geometry, the specified cutting tool from Fraisa's ToolExpert, and the CAM-generated NC 
program. This simulation provides crucial insights into the projected machining duration, 
considering the chosen tooling and the defined preparation strategy. Furthermore, it 
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enables the identification of potential kinematic interferences or collisions between the 
tool, the workpiece, and the machine tool housing, thereby enhancing process planning 
and mitigating risks 

 

Figure 7 – Milling simulation in Create MyVirtual Machine 

 

Moreover, Figure 8  demonstrates that the energy consumption required for processing 
work piece can be assessed within the simulated manufacturing environments of Create 
MyVirtual Machine or Run MyVirtual Machine. 

 

Figure 8 – Trace of energy consumption in Create MyVirtual Machine 
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2.a.1.1 Architecture 
Figure 9 illustrates the architecture for the virtual commissioning of a part. This framework 
integrates the Fraisa ToolExpert within the CAD/CAM software environment, enabling 
precise tool selection for manufacturing processes. The defined machining operations are 
subsequently simulated using Siemens Run MyVirtual Machine. 

 

Figure 9 – Architecture for Virtual commissioning 

 

2.a.1.2 Applications 

ToolExpert 

The FRAISA ToolExpert is a digital tool designed to quickly and accurately determine 
cutting data for FRAISA tools. It supports various machining processes such as milling, 
drilling, and trochoidal machining by calculating optimal parameters like cutting speed, 
feed rate, step-over, and spindle speed based on the selected material, tool type, 
machining strategy, and machine setup. 

With an intuitive user interface and a comprehensive database of materials and tools, the 
ToolExpert helps improve efficiency, reduce tool wear, and optimize process times. The 
generated data can be seamlessly integrated into CAM systems like Siemens NX, making 
it an ideal solution for modern, high-performance manufacturing environments. 

Run MyVirtual Machine 

Siemens Run MyVirtual Machine is a comprehensive software solution designed to 
accurately simulate the entire machining process on a virtual representation of a CNC 
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machine. It supports the validation of Numerical Control (NC) programs and machine 
kinematics by calculating critical performance indicators such as estimated machining 
time, energy consumption, and potential tool wear, based on the loaded NC code, machine 
configuration, and part geometry. 

With its ability to precisely replicate real-world machine behavior, Run MyVirtual Machine 
helps identify and prevent potential collisions, programming errors, and inefficient 
movements before any physical material is cut. This robust virtual environment allows for 
the thorough evaluation and optimization of machining strategies, significantly improving 
efficiency, reducing costly physical prototypes, and minimizing machine downtime. This 
virtual validation process benefits from precise tool and cutting data selection, such as 
those provided by Fraisa's ToolExpert within CAM systems like Siemens NX, creating a 
holistic digital workflow from design to validated production. 

2.a.1.3 Key challenges and solutions for full-scale implementation 

In the future, the customer should no longer have to manually specify the material, as it 
should already be defined upon importing the CAD file. The milling strategy, along with 
suitable cutting parameters, should also be automatically suggested based on the part or 
the specific area to be machined. To enable this, the CAD model must be equipped with the 
corresponding macros. 

The milling strategy should be optimally determined based on conditions such as the part 
material, pocket depth, pocket size, pocket corners, the milling machine, and the available 
tools (whether new or already showing wear). Currently, CAD features are either not 
recognized at all or only partially. Tool suggestions are made solely based on the material 
to be machined, while the strategy still has to be selected manually. 

To automate this process, algorithms are missing that can determine the appropriate 
strategy and parameters based on the above-mentioned features. 

2.a.2 Industrial trials of the pilot  
 

2.a.2.1 Testing procedure and Barriers  

This section describes the testing procedure and technical activities undertaken to 
implement the proposed use case, focusing on the integration of Fraisa's ToolExpert with 
Siemens NX and Siemens' virtual manufacturing environments. Furthermore, it addresses 
the specific barriers encountered during these tests on industrial equipment and pilot 
setups, along with the measures adopted to mitigate them or improve the expected output. 

• CAD Model Creation: The initial phase involved the design of the drone cover 
within Siemens NX. This CAD model served as the foundational element for 
subsequent manufacturing simulations. Detailed geometric modeling was 
performed to accurately represent the workpiece. 

• Virtual Environment Configuration: A critical step was the configuration of the 
virtual manufacturing environment. This necessitated the creation of a digital twin 
of the target machine tool, specifically the GF MillP800US, within Create MyVirtual 
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Machine. This digital representation served as the platform for integrating the 
generated NC code and the tool definitions. 

• Tool Data Integration: Tools selected for the machining process were sourced 
from Fraisa's ToolExpert database. These tool definitions, including their 
geometries and cutting parameters, were subsequently integrated into the virtual 
environment. 

• NC Code Generation and Simulation: Following the tool integration, NC code was 
generated based on the designed workpiece and selected tools. Simulations were 
then conducted with this NC code in Create MyVirtual Machine (for setup and 
programming verification) and Run MyVirtual Machine (for real-time simulation and 
optimization). This facilitated the validation of the machining process, assessment 
of machining duration, and identification of potential collisions. During the 
implementation and testing phases, several technical and logistical barriers were 
encountered. 

• Software Licensing Barrier: Key software components, including Siemens NX, 
Create MyVirtual Machine, and Run MyVirtual Machine, are proprietary, license-
based solutions that require on-premises installation. This necessitated 
significant lead time for procurement, license management, and IT infrastructure 
setup. 

• Digital Twin Creation and Validation Barrier: The accurate representation of 
the physical GF MillP800US machine tool as a digital twin within Create MyVirtual 
Machine was a crucial task for setting up the virtual environment. This involved 
meticulous geometric modeling, kinematic definition, and ensuring accurate 
correspondence with the physical machine's behavior. Any inaccuracies in the 
digital twin could compromise the reliability of simulation results. 

2.a.2.2 Configure to order process 

This section outlines a Configure to Order process for drone manufacturing, integrating 
various digital tools and platforms to streamline the workflow from customer configuration 
to virtual production. The process is designed to ensure consistency and data flow across 
different stages, as illustrated in the provided Figure 10. 
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Figure 10 – Configure to order process 

The integrated process can be broken down into the following key steps: 

• Web shop configurator: A customer initiates the process by configuring a drone 
within a web shop interface. This configuration includes selecting drone-specific 
components and defining custom text for engraving on the drone cover. 

• Data Transmission to Data Integration Layer: Information regarding the 
configured drone and the engraving text is transmitted to a central data integration 
layer, specifically Siemens Insights Hub. Data exchange at this stage occurs 
through JSON files, ensuring a standardized and efficient transfer of information. 

• Master Data Record Creation: Upon receiving the configuration data, Siemens 
Insights Hub creates a unique master data record. This record is assigned a unique 
identification number and contains all pertinent drone configuration details. 

• Product Lifecycle Management (PLM) Integration: The engraving text and other 
relevant configuration details are then sent to a Product Lifecycle Management 
(PLM) system, Siemens Teamcenter. Within Teamcenter, a new Engineering Bill of 
Materials (EBOM) is derived, incorporating all related specifications for the 
customized drone and its cover. 

• Real-Time Digital Twin: Relevant information, including the updated EBOM and 
CAD data output, is sent back to the data integration layer as a change notification. 
Concurrently, this information is also transmitted to a Real-Time Digital Twin model 
that represents the virtual manufacturing environment. This digital twin, which 
incorporates tools like Run MyVirtual Machine, virtually produces the drone cover 
with the specified engraved text. Crucially, this virtual manufacturing process 
allows for the extraction of valuable data, such as energy consumption and 
processing time, providing insights into the efficiency and feasibility of the 
production. 

2.a.3 Final KPIs monitoring and validation 

2.a.3.1 Industrial Outcomes and Lessons Learned 

The FRAISA ToolExpert is fully integrated into Siemens NX CAM software. This allows 
customers to select the appropriate FRAISA tool directly within CAM and seamlessly 
transfer the corresponding geometry and cutting data quickly and without errors. As a 
result, careless mistakes are avoided, saving customers both time and resources. 

2.a.3.2 KPI Measurement and Performance Evaluation 
Table 1 – KPIs identified for BP1 

ID 

BUSINESS 
Indicators 

List the Business 
objectives 
expected for the 
Business 

DESCRIPTION 

Give a detailed 
description of 
the indicators 

Unit* 
Initial 
value 

M36 
Value 

Expected 
final 
Value 

Expect. 

Date of 
achieve 
ment** 
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Scenario/Use 
Case 

1 Tool selection 

Operator takes 
the right tool 
and chooses the 
right strategy 

Time to 
select  
tool 
and 
strateg
y (min) 

60 10 2  2028 

2 

ToolExpert in 
CAM 

 

Transfer 
geometrical tool 
data and cutting 
data to CAM 
 

failures 
(%) 

 

20% 2% 2% 2025 

3 

Virtual 
environment for 
tool and 
strategy  

Programming/se
t-up time of work 
pieces can be 
optimized 

Progra
mming/ 
set-up 
time (%) 

100% 
(base
line 
120 
min) 

80% 30% 2028 

4 

Virtual 
environment for 
energy 
optimization 

Estimated 
energy 
consumption 
can be 
optimized based 
on tool selection 
and milling 
strategy  

Energy 
consu
mption 
(%) 

100% 
(base
line 
80 
KW) 

80% 60% 2028 

 

2.a.3.3 Final KPI Assessment and Business Impact 

Tool selection: Once the KPI tool selection is implemented, FRAISA customers will always 
use the right tool with the correct cutting data. This strengthens application support and 
customer loyalty. 

ToolExpert in CAM: Largely already implemented. FRAISA thus strengthens customer 
relationships by enabling NX CAM users to integrate tools more quickly, saving both time 
and resources. 

Virtual environment for tool and strategy: With this KPI, customers reduce setup times, 
allowing machines to resume production faster and operate more productively. 

Virtual environment for energy optimization: Optimally applied tools and strategies 
reduce customers’ energy consumption, enabling them to operate more economically. 
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2.b Business Scenario 2: 
The second business scenario focuses on the tool lifetime, gathering relevant data from 
the machine and using AI models for predicting the wear of tools. The approach benefits 
from the federative learning method, collecting data from different machines and 
aggregating this data for improving the AI models and predictions. Two types of AI 
applications have been developed by the partners CORE and Atlantis. 

2.b.1 Full-scale implementation 

2.b.1.1 Architecture 

Atlantis Federated Predictive Maintenance (FPdM) 

The architecture specifically designed for GF Pilot is illustrated in Figure 11. In this section, 
components developed by Atlantis for the federated learning objectives are coloured in 
orange, to provide more clarity of the system’s architecture. Τhe Federated Predictive 
Maintenance (FPdM), corresponds to components number four of the Reference 
Architecture. The designed system supports two basic workflows: 

• Training a model in a federated learning environment 
• Performing inference using the trained model on input data 

  
These two workflows have been developing simultaneously during the trials, constantly 
fine-tuning and improving. 

 

Figure 11 – FPdM architecture 

A more detailed view of the federated learning-specific architecture is presented in Figure 
12. This schema is adapted from the official Flower documentation, with additional 
modifications to incorporate a custom Flask Server developed for this use case’s 
requirements. 
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Figure 12 – FPdM Server & Client services 

Details for the designed components are described below, as fetched and furtherly 
enhanced from the official Flower documentation1: 

• FPdM Server (Orchestrator): This component plays a central role in managing 
the federated learning process. It handles communication with the 
participating Clients, orchestrates training rounds, and aggregates metadata 
received from each client. Based on literature, it should be deployed in a 
centralized machine that is accessible from all machines that will participate 
in the federated learning process. The FPdM Server runs two main services: 

o Superlink: This service, included in the Flower federated learning 
framework, is a long running process that forwards task instructions to 
Clients and receives task results back. For enhanced security and 
reduced risks, this service can be configured to accept only Clients that 
presenting specific SSL (Secure Sockets Layer) certificates during the 
Client-Server handshake process. Communication between Superlink 
and any other service (e.g. Serverapp, Supernode) is achieved over 
gRPC channels. 

o Serverapp: This is a short-lived process with RE4DY-specific code that 
customizes all Server-side aspects of federated learning systems 
(client selection, client configuration, minimum required Clients, result 
aggregation). From this service, the AI engineers can customize, modify 
or extend the aggregation methods to meet use-case-specific goal. 

 The Superlink image can be simply pulled from Flower Docker registry while the Serverapp 
image, that has been designed and built specifically for the RE4DY project, is hosted in the 
Atlantis repository and can be accessed upon request. Both services can be deployed 
using Atlantis-provided Docker Compose files, documentation and deployment scripts 
designed for smooth installation and easy deployment. 

• FPdM Client: The FPdM Client is a suite of services designed to run on the edge 
of milling machines. It consists of the following services: 

 
1 https://flower.ai/docs/framework/explanation-flower-architecture.html  

https://flower.ai/docs/framework/explanation-flower-architecture.html
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o Supernode: This service, included in the flower federated learning 
framework, is a long-running process that connects to the Superlink, asks 
for tasks, executes tasks and returns task results back to the Superlink. 

o Clientapp: This is a short-lived process with project specific code that 
customizes all client-side aspects of federated learning systems. From 
this service, developers and AI engineers can define custom data 
preprocessing methods, specific machine learning models, evaluation and 
fit functions, and postprocessing methods. This service hosts the custom 
model that was designed and developed for GF Pilot’s use-case. The 
transmission of any metadata generated by Clientapp to the FPdM Server 
is achieved via Supernode-Superlink communication.  

  
On the client site, a Flask Server is deployed to facilitate external interactions through API 
calls. Developed after GF technical team’s instructions, the following endpoints are 
available: 

/start-training: Accepts POST requests to initiate and trigger a federated 
learning session. Upon receiving request, the short-lived Clientapp 
process is launched using the defined parametrization. The Clientapp 
process will terminate when all training rounds are completed. The current 
approach allows dynamic client participation, allowing Clients to join the 
federation even after training has started. It should be noted that the POST 
request to the /start-training endpoint, must include milling job names 
and tags in its body to determine the jobs whose data will be used as 
training data for the model. 

Request Payload Example 
[{  

    "JobId": "3b379f00-132f-4989-85cb-fb9cdf0fa05a",  

    "JobName": "2025-05-12T00:00:00.000Z Test Job 1",  

    "StartTime": "2025-05-12T00:00:00.000Z ",  

    "EndTime": "2025-05-12T00:01:00.000Z ",  

    "Tags": [  

      "100000000000",  

      "Material 1",  

      "ap 0.0",  

      "ae 0.0",  

      "Article Type 1",  

      "Vb 0.02",  

      "Vbmax 0.00"  

    ],  

    "Operations": [  

      "1a21858e-7ba2-40f4-a7ce-ec7a05fc90eb",  

      "0d016e93-9089-4b90-b367-f7dda0eb629f",  

      "85026ce5-c6bb-4bc1-be6f-0e1619f3d4c0",  

     ]  

}, 

{  

    "JobId": "71fdb5ea-5480-4e0d-9f3d-1fa7cd68bcdd",  

    "JobName": "2025-05-12T00:01:30.000Z Test Job 2",  

    "StartTime": "2025-05-12T00:01:30.000Z ",  

    "EndTime": "2025-05-12T00:02:00.000Z ",  
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    "Tags": [  

      "100000000001",  

      "Material 1",  

      "ap 0.0",  

      "ae 0.0",  

      "Article Type 1",  

      "Vb 0.025",  

      "Vbmax 0.00"  

    ],  

    "Operations": [  

      "e6dfff08-205c-4b90-b00d-35a1cb6d1048",  

      "73568d57-5983-4fcb-8ba4-1822a22e5b16"  

     ]  

}] 

  
Response Example 

{ 

“job_id”: “038ae0e4-3595-4cd6-9d40-

1cb3d1136920”, 

“message”: “Training started successfully.”. 

“status”: “success” 

} 

/perform-inference: Accepts GET requests and returns the inference made 
by the trained model. When a GET request arrives, the trained model will be 
called with the data included in the request given as inputs. The inference 
result will be returned after the successful data preprocessing and model 
execution. 

Request Payload Example 
{ 

“JobNames”:  

["2025-05-12T00:00:00.000Z Test Job 1", 

"2025-05-12T00:01:30.000Z Test Job 2"] 

} 

Response Example 
{ 

    "message": "Inference completed successfully.",  

    "results": [ 

        {  

            "JobName": "2025-05-12T00:00:00.000Z Test 

Job 1",  

            "RUL": 0.6365838646888733,  

            "Vb": 0.12731677293777466,  

            "timestamp": "2025-05-12 08:40:33"  

        },  

        {  

            "JobName": "2025-05-12T00:00:00.000Z Test 

Job 2",  

            "RUL": 0.4732838646888733,  

            "Vb": 0.0946577293777466,  

            "timestamp": "2025-05-12 08:40:33"  
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        }  

    ]  

} 

  

Visualization: To facilitate the visualization of inference results, a dedicated component 
was developed that allows users to log in and view the latest outcomes for their respective 
tools. This functionality is implemented using Grafana2, an open-source platform known 
for its rich visualization capabilities. After deploying a Grafana instance, a straightforward 
dashboard was configured, illustrated in Figure 3 and Figure 4. The user can select whether 
they want to view the dashboard for a single milling tool or for multiple tools 
simultaneously. 

The FEDMA system is designed to enable Federated Learning (FL) in industrial 
environments while preserving data privacy. It ensures that raw machining data remains 
at the edge device on FRAISA premises, while the GF Cloud handles model aggregation 
and orchestration. A web-based UI developed by CORE provides user interaction via GF’s 
RE4DY API. 

At the edge, the Job Recorder collects sensor data and metadata during machining jobs, 
storing them in structured folders (CSV + JSON). The FEDMA Client, developed using 
FastAPI, exposes RESTful endpoints (/perform-training and /perform-inference) to process 
these jobs. In a training workflow, the client loads locally labeled data, trains a model, and 
sends updated weights via gRPC to the FEDMA Server, built with the Flower framework. It 
then receives and stores the new global model. In inference, the client uses the latest 
model to predict tool wear and RUL, returning results to the cloud. 

The GF Cloud hosts three main components. The Process Inspector receives metadata 
and human-provided wear labels (Vb, Vbmax). The RE4DY Service serves as an 
orchestration API, triggering model training/inference at the edge via HTTP. It aggregates 
predictions and returns them to the user-facing dashboard. The FEDMA Server 
aggregates updates from all clients (currently one), maintaining the global model using 
Flower’s built-in coordination logic. 

Since edge devices are on a secured network, the RE4DY Service acts as an intermediary, 
relaying API calls to the edge. The UI, hosted by CORE, interacts only with RE4DY, enabling 
users to trigger jobs and view results. This three-tiered structure—edge, cloud, UI—
enables a secure, scalable, and privacy-preserving federated learning workflow. 

 

 
2 https://grafana.com/  

https://grafana.com/
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Figure 13 – Federated Maintenance for Milling Machines (FEDMA) 

To integrate FEDMA into the GF Cloud, CORE first containerized the FEDMA Client and 
FEDMA Server, pushed them to GF’s Azure registry, and provided deployment guides. 
Using Docker Compose, GF deployed the components: the server in the cloud, and the 
client on the FRAISA edge machine with proper volume and network setup. 

The FEDMA Server was configured to listen for incoming gRPC connections, while the 
FEDMA Client was prepared to expose REST endpoints and participate in FL rounds. TLS 
was enabled for secure communication. 

Next, integration testing was conducted. The RE4DY Service (developed by GF) 
successfully triggered training and inference operations via API calls to the FEDMA Client. 
The system was verified end to end: local training was initiated, model updates were 
aggregated by the server, and inference results were returned and visualized. 

Since direct access to the edge was not permitted, GF's RE4DY API handled all 
communication. CORE also developed a UI that interacts solely with RE4DY, abstracting the 
complexity of the edge operations and allowing users to trigger jobs, view predictions, and 
input wear labels. This architecture respects security boundaries while enabling robust 
interaction and federated learning capabilities. 

2.b.1.2 AI Models 

2.b.1.2.1 FPdM (No 4) Model 
The second stage of the workflow focuses on the development and deployment of an 
artificial-intelligence–based system for predictive monitoring of tool health and wear. 
 For this purpose, a feed-forward neural network (FNN) architecture was conceived, trained, 
and implemented to address the specific requirements of tool-wear estimation. The design 
process was guided by both the operational context of the machining environment and 
the availability of relevant data streams. Two principal categories of input data feed the 
model: 

• Dynamic sensorial measurements, continuously collected and transmitted 
through the MyRConnect infrastructure. These high-frequency signals capture the 
real operating conditions of the machine and include, among others, spindle 
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speed, spindle vibration, spindle load, and curve abscissa. Such parameters are 
directly related to the physical stresses experienced by the cutting tool and 
therefore provide essential information for characterising wear mechanisms. 

• Static job-related information, describing the machining task as planned and 
executed. This set comprises features such as total job duration, number of 
operations, and cutting strategy parameters (for example axial and radial infeed 
depths). These variables reflect the overall workload imposed on the tool and 
complement the time-series signals from the sensors. 

The neural network is trained to perform a regression task, with the prediction target 
derived from a fusion of the V_b and V_bmax fields. These fields contain direct 
measurements of tool wear expressed in millimetres and are considered reliable 
indicators of the tool’s degradation state. By learning the relationship between the 
combined input features and these wear measurements, the model outputs a continuous 
estimate of the expected tool wear at the end of a machining job. To convert this raw 
regression output into a more actionable indicator, the predicted wear value is 
subsequently compared to user-defined thresholds established by domain specialists. 
This post-processing step enables the computation of a Remaining Useful Lifetime 
(RUL) percentage, which quantifies how much of the tool’s service life remains before it 
reaches a critical wear limit. Such an approach provides operators and maintenance 
planners with an interpretable, real-time metric that can support proactive decision-
making, reduce unplanned downtime, and extend overall tool longevity. 

2.b.1.2.2 FEDMA AI Models: Federated Maintenance for Milling 
Machines (CORE) AI Models 

At the core of the FEDMA service there is a Deep Learning (DL) model developed to 
estimate the Remaining Useful Life (RUL) of milling tools. This model enables 
manufacturers to maximize tool usage, reduce unplanned downtime, prevent failures, and 
improve equipment reliability. 

The model is specifically trained to predict tool wear, using data collected from FRAISA’s 
milling tool experiments and metadata from My rConnect. It leverages both 
experimental and real-world operational data, including: 

• Sensor values: temperature, vibration, cutting forces, etc. 
• Machining parameters: axial depth (ap), radial depth (ae), machining strategies 
• Tool metadata: article number, capturing the geometry and specification of each 

tool 
• Material properties: such as the type and grade (e.g., M 1.2738 HH) 

Wear labels used for supervision: 

• Vb: mean wear 
• Vbmax: maximum wear 

 

In addition to predicting wear (Vb and Vbmax), the system includes a dedicated RUL 
estimation algorithm. This algorithm calculates the Remaining Useful Life based on: 
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• The predicted wear values 
• The duration the tool has already been in use 
• The tool’s geometry and design, inferred from its article number 

The model is further improved through a Federated Learning approach, which allows it to 
continuously learn from new experiments across distributed environments—without 
centralized data collection—ensuring privacy and scalability. 

An inference script integrates the model into operational workflows. Upon receiving a job 
identifier, the system provides operators with: 

• Predicted Vb (mean wear) 
• Predicted Vbmax (maximum wear) 
• Estimated RUL (remaining useful life) 

This allows real-time, data-driven decision-making to optimize tool replacement cycles 
and improve process efficiency. 

 

 

2.b.1.3 Applications 
 

The FPdM component is equipped with a high-level user interface that facilitates the 
interaction with the system and allows users to execute all supported functionalities in an 
intuitive manner. The interface has been carefully designed to balance analytics 
visualization and operational actions, providing both insight into tool health and the ability 
to trigger relevant processes directly from the panel. The interface displayed in the 
following figure can be conceptually divided into two main sections: the Analytics Section 
and the Actions Section. 

 

Figure 14 – FPdM User Interface 
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Located on the right-hand side of the interface, the analytics section hosts a 
comprehensive dashboard presenting the results of any inferences that have been 
performed for tools participating in milling jobs. The dashboard is fully interactive, 
enabling users to select specific tools and define time windows of interest to focus their 
analysis. 

For each selected tool, the dashboard presents four distinct panels arranged 
horizontally: 

Current Health Status Panel: The first panel displays the most recent inference for the tool, 
reflecting its current health condition. The tool status is visually encoded using a colour 
scheme, where green indicates low wear, yellow indicates moderate wear, and red 
corresponds to high wear. This immediate visual feedback allows operators to quickly 
identify tools that may require attention. 

Wear Prediction Panel: The second panel presents the latest wear prediction in millimetres, 
again using the same colour coding for consistency and quick interpretation. This 
quantitative metric complements the health status panel by providing precise values for 
planning maintenance or replacement. 

Historical Inference Panel: The third panel contains a table of all historical inferences for 
the selected tool, enabling users to trace past predictions, monitor trends, and validate 
model performance over time. 

Wear Evolution Graph: The fourth and final panel visualizes the evolution of tool wear over 
time. This graph allows users to observe progressive degradation patterns, detect 
anomalies, and correlate tool performance with operational conditions or job 
characteristics. 

 

Figure 15 – Analytics section with the designed panels zoomed in for a selected tool 

Located on the left-hand side of the interface, the actions section provides interactive 
fields and buttons that allow the user to execute specific operations. Users can initiate 
inference for a particular job, by selecting the desired job from the available jobs shown in 
the list or trigger a federated learning process to update the model with selected jobs 
forming the training corpus. 
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Figure 16 – Select jobs and perform tool wear 

inference action 
 

 
Figure 17 – Select jobs and start training action 
 

 

By combining both analytics and operational controls within a single interface, FPdM 
enables a seamless workflow where monitoring, prediction, and model training are tightly 
integrated. This design ensures that users can not only observe tool health trends but 
also act proactively, supporting informed decision-making and efficient maintenance 
planning. 

To support real-time decision-making and ensure efficient use of machining resources, 
CORE has developed an intuitive user interface as part of the FEDMA service. This 
interface enables operators to interact directly with the federated learning system, 
providing full control over training schedules and inference execution. By aligning with 
production workflows, the system empowers users to make data-driven decisions while 
maintaining operational efficiency and data privacy. 
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Figure 18 – FEDMA User Interface 

Key Functionalities: 

1. Controlled Model Training  

The interface of Figure 19 allows operators to initiate model training at appropriate 
times, giving them full control over when training tasks are executed. This ensures that 
training can be scheduled without disrupting ongoing production and allows optimal 
use of available resources. 

 

Figure 19 – Initiate FEDMA Model Training through UI 

 

2. Inference Execution for Job-specific Prediction 

Through the UI of Figure 20, operators can initiate inference by selecting edge where 
jobs were executed. This enables users to run predictions on actual completed 
operations, ensuring that the analysis is both relevant and accurate for the selected 
context. 
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Figure 20 – Initiate FEDMA Inference 

Once the inference is executed locally on the edge device, the system generates job-
specific predictions, including Vb, Vbmax and RUL estimation, as depicted in Figure 21: 

 

Figure 21 – FEDMA job-specific results 

3. User Validation for Continuous Learning 

After inference, users can fill in actual wear measurements along with the unique tool 
ID, as per Figure 22. This feedback loop serves multiple purposes: 

o Improves future wear and RUL predictions 
o Enhances historical tool tracking and insights 
o Supports the model’s retraining pipeline within the federated learning 

framework 
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Figure 22 – FEDMA Validation Step 

4. Tool Insights and Historical Visualization 

After In the Tool Insights section, users can: 

o Select a specific tool using its unique identifier 
o View wear predictions and RUL estimates from past operations 
o Explore wear history through interactive visual plots 

 

FEDMA, through its federated learning approach, depicted in Figure 23, advanced AI 
models, and user-friendly interface, aims to maximize tool usage, reduce downtime, 
prevent malfunctions, and enhance equipment robustness—all while respecting data 
privacy and security. By empowering operators with real-time insights and full control over 
training and inference, the system delivers a practical and privacy-preserving solution for 
predictive maintenance in modern machining environments. 
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Figure 23 – FEDMA tool-specific results 

2.b.1.4 Key challenges and solutions for full-scale implementation 
 

The current FPdM (Federated Predictive Maintenance) implementation has successfully 
demonstrated the feasibility of federated learning by supporting two participating milling 
machines. However, scaling up to a deployment across a larger number of machines 
introduces several technical challenges that would need to be addressed to ensure 
robustness and efficiency. 

A primary concern in full-scale implementation is maintaining reliable, low-latency 
communication between the FPdM Server and all FPdM Clients. As the number of Clients 
grows, the network traffic will increase resulting to higher demands on bandwidth and 
synchronization. Unstable or interrupted communication channels may lead to delayed 
model updates, failed training rounds or inconsistent participation of Clients. 

Another critical challenge in full-scale federated learning deployment is managing the 
computational complexity of both Server and client operations. On the Server side, as the 
number of participating Clients increases, so does the overhead involved in aggregating 
model updates, especially when dealing with large models or short training rounds with 
high-frequency updates. This can strain CPU and memory leading to bottlenecks. 
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Solutions such as parallel computing or hierarchical aggregation might contribute to 
addressing these challenges.  On the client side, resource limitations are an equally 
important concern. Edge devices typically come with limited computational power and 
memory, making it challenging to train complex models. Unlike centralized training 
approaches, large-scale edge deployments cannot rely on advanced GPUs or high-
performance CPUs due to increased costs. As a result, training must be optimized to run 
efficiently on heterogeneous and resource-constrained hardware. Utilizing adaptive 
training techniques, such as limiting the number of local epochs, batching strategies or 
compressing models could help align with computational demands and enable a broader 
participation of devices in a large-scale deployment. 

The full-scale deployment of the FEDMA system presents a range of technical and 
operational challenges, particularly within heterogeneous industrial environments. Below 
are the key challenges identified, along with the proposed or implemented solutions, 
mapped to the core components: Inference, Training, and Federated Learning. 

1. Data Integration and Standardization 

Challenge: 
Ensuring that all required data (sensor operation data, machining parameters, job 
metadata, and wear labels) is consistently available and structured across different 
CNC machines and edge devices is a significant integration barrier. Variability in 
machine software, connectivity protocols, and tag availability introduces risk in system 
reliability and scalability. 

Solution: 

• Standardized data format for inference and training input. 
• Edge devices validate data (and tags) before triggering training or inference. 

 
2. Computational Constraints at the Edge  

Challenge: 
Edge devices often lack high-performance computing capabilities, limiting the 
feasibility of running deep learning models for local training and inference. This is 
particularly relevant during federated training rounds, which can require significant 
CPU and memory resources. 

Solution: 

• Optimized model architecture for edge compatibility (e.g., model pruning, 
quantization). 

• Offer option to operators to start training during machine idle periods, 
allowing training tasks to run without disrupting ongoing production and 
making efficient use of available resources. 

3. Scalability and Maintainability 

Challenge: 
As deployments scale to more machines and factories, it becomes challenging to 
monitor performance, manage updates, and ensure consistent behavior across 
installations. 
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Solution: 

• Modular software architecture to decouple edge logic, inference, and FL 
orchestration. 

 

4. Tool-Specific Intelligence and Wear Modelling 

Challenge: 
Tool behavior varies by geometry and material, and using a generic model may lead to 
poor performance. Accurate wear prediction and RUL estimation depend on tool-
specific behavior and prior usage history. 

Solution: 

• Use article number as a key input to model tool geometry-specific wear 
trends. 

• Integrate a dedicated RUL estimation algorithm that considers: 
o Predicted wear (Vb and Vbmax) 
o Elapsed tool usage time 
o Tool geometry (from article number) 

The FEDMA system has demonstrated functional success across core components: wear 
prediction, RUL estimation, and federated model improvement. However, scaling to 
industrial levels requires careful attention to system integration, computational efficiency, 
network reliability, and test coverage. The outlined solutions serve as a foundation for 
robust deployment and continued evolution in complex manufacturing environments. 

2.b.2 Industrial trials of the pilot  

2.b.2.1 Testing procedure and Barriers  

For the test and data collection at FRAISA, two machines were equipped with GF My 
rConnect EDGE boxes, which record process data during milling operations. Each time a 
program is started on the milling machine, a new job is created in My rConnect. If a tool 
change occurs during the program, a new sub-job is generated. Tags can be assigned to 
each job to link additional data. The idea was to use these tags to attach values that are 
not automatically recorded—such as workpiece material, unique tool ID, tool article 
number, wear land width, etc. 

To make this work, only one tool could be used per job (i.e., per program on the milling 
machine), because if multiple tools were used, the tags could not be clearly assigned to 
the individual milling tools. 

One of the My rConnect boxes is installed in the R&D test center, where mainly prototype 
or development tools are used. For these tools, storing data makes little sense because 
they do not have article numbers, and their geometry data is therefore not stored in the 
Data Container. The second My rConnect box was installed on a machine where more jobs 
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could be recorded. However, most programs on this machine use multiple tools, which 
results in sub-jobs that cannot be uniquely assigned. 

Attempts were made to generate more data by running separate programs overnight. 
However, due to the additional effort required for programming, setup, and manually 
matching the tags, this was only partially successful. 

Ideally, tags would be automatically assigned to both jobs and sub-jobs with the start of 
the program. 

2.b.3 Final KPIs monitoring and validation 

2.b.3.1 Industrial Outcomes and Lessons Learned 

The outcomes and lessons learnt for this business process and scenario are the following: 

• Two applications have been deployed by CORE and ATLANTIS for the prediction of 
lifetime of tools as web applications based on data sharing between Fraisa and GF, 
using the My rConnect platform.  

• The applications use advanced AI models which have been developed through 
operations data collection campaigns and labelling by Fraisa experts on two GF 
machines 

• The models provide already an accuracy on the prediction of residual lifetime of 
tools of 80%. It is expected that this accuracy will increase above 90% after 
deployment and further training used the Federated learning approach, which 
enables the aggregation of models corresponding to different machines and end 
user sites, without sharing confidential data. The initial dataset for 1 machine is 
nearly 100 Machining files, consisting of 5-10 operations, each file around 10 MB) 

• The initial objectives have been therefore attained and are technically ready to 
ramp up in accuracy after deployment, which will enable the achievement of the 
KPIs related to tooling cost and carbon footprint reduction, delivering a competitive 
advantage to Fraisa and GF, and enabling a new business model for tooling in 
collaboration with Core and Atlantis.  

2.b.3.2 KPI Measurement and Performance Evaluation 

The KPIs for this business process are represented in Table 2. They are focused on tooling 
cost reduction, enabled by the prediction of lifetime that allows to use the tool closer to 
its end of life without risks; associated with the increase of tool lifetime KPI. Additionally, 
the knowledge and understanding of tool lifetime for given applications enable the KPI of 
better designed tooling and finally the reduction of carbon footprint, which is associated 
with the material waste of the tool at end of life. Avoiding tool breakage enable the 
recycling of tools 2-3 times. 

The previous KPIs are enabled by the accuracy in the prediction of the tool lifetime through 
the algorithms and applications developed by Core and Atlantis. Currently this accuracy 
is of 83%. This enables a mean gain of nearly 15% in tool lifetime, as the mean residual 
lifetime of tools when they are changed by users, compared to maximum lifetime, is 
currently 70% and below. This allows to use the tools 15% more time and reduce the costs 
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by around 20%. With the usage and deployment of the applications it is expected to reach 
a 30% in cost reduction, by extending lifetime by 30%. The rate of recycling of tools will be 
also facilitated, and it is expected that the carbon footprint will be reduced by 10% in 2026. 
The lifetime of tools is currently being optimised for special applications based on the 
knowledge accumulated with the solution, and the increase of this lifetime is of 20%, as 
depicted by Table 2. 

 

 

Table 2 – KPIs identified for BP2 

ID 

BUSINESS 
Indicators 

List the Business 
objectives 
expected for the 
Business 
Scenario/Use 
Case 

DESCRIPTION 

Give a detailed 
description of 
the indicators 

Unit* 
Initial 
value 

M18 
Value 

Expected 
final 
Value 

Expect. 

Date of 
achieve
ment** 

1 
Tooling cost 
reduction 

Due to optimized 
application 
parameters tool 
can stay longer 
in operation 

Tool 
cost 
(€)% 

100% 80% 70% 2025 

2 
Longer tool life 
cycle 

Increase of tool 
lifetime 

(€)% 100% 120% 130% 2025 

3 
Better designed 
tooling 

Tool layout is 
tailored on the 
application 

Life 
time 
h (%) 

100% 100% 120% 2026 

4 
Reduced CO2 
footprint 

Less energy 
consumption 

kW 
(%) 

100% 100% 90% 2026 

 

2.b.3.3 Final KPI Assessment and Business Impact 

The final KPIs assessment gives out significant business impact for the organisations 
involved in the development of this business processes: 

• As main stakeholder, Fraisa has now a unique solution for adding value to the tools 
they manufacture. On one hand they can propose longer lifetimes during usage, 
currently 15-20%, and expected to increase up to 30% in 2026 following 
improvement of the accuracy of algorithms. On the other hand they decrease 
manufacturing costs by recycling efficiently the tools before the break, saving 
therefore materials and reducing the carbon footprint of manufacturing. 
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• GF, as machine manufacturer, has a high value technology offer in partnership with 
Fraisa. It is well known that manufacturing costs can be strongly influenced by 
tooling costs, in particular in key markets like medtech and aerospace. The 
increase of tool lifetime has therefore a direct influence on the cost per part, which 
may be reduced by 10% and provide a competitive advantage with respect to 
standard tooling systems. 

• For CORE and ATLANTIS, in charge of the development of the prediction algorithms 
and application deployment, the success of the project implies the implementation 
of a new business model where they can gain benefit from either subscriptions or 
licensing of the software, with an initial offer giving already significant value to the 
organisations involved and their customers, and a potential for improvement and 
greater revenues as the application usage increase and develops with the 
partnership. 
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2.c Business Scenario 3: 
The third scenario of the pilot focuses on the machine maintenance, starting from the 
machine spindle, the most critical component, and then extending the scope to the rest of 
main components subjected to intensive efforts and wear. The resulting applications, VEGA 
and Machine Diagnosis, incorporate different types of models. A particular attention was 
made to the drive train, for which a detailed ontology was developed, as well as an AI model 
for predicting potential failures. 

2.c.1 Full-scale implementation 

2.c.1.1 Architecture 

The architecture of the machine predictive maintenance applications is represented in 
Figure 24 and Figure 25. A new acceleration sensor of high resolution has been integrated 
into the spindle and integrated in the connectivity framework of the machine through the 
EDGE computer and towards My rConnect platform. A visualisation interface, VEGA 
monitoring and analytics, was developed for displaying the parameters.  

 

Figure 24 – VEGA Machine Spindle Monitoring Application Architecture  

For extending the application to the other critical components, another application was 
developed, Machine Diagnosis. For the specific case of the drive train, an ontology model 
was developed by UiO, as well as an AI predictor of potential failures.  

A high-level architecture for the Machine care application is represented in Figure 25. 
Seven critical components were identified, and specific sensors were deployed on My 
rConnect, The application supports dedicated tests in controlled environments and 
conditions, where models can provide accurate state of health and predict probability of 
failures, giving then advice to service technicians for maintenance work, as synthetised by 
Figure 25. 
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Figure 25 – Machine Diagnosis Application Architecture  

 

2.c.1.2 AI Models 
A particular AI model was developed for predicting potential malfunctions or failures for 
the drive train of milling machines. The solution is based on data collected during 
production and maintenance tests, using the different available sensors on the machine. 
A My rConnect application gather this data and a machine learning model was trained 
using expert diagnosis knowledge from technicians.  

When comparing the accuracy of the predictions with expert labelled data we observe that 
the main critical issues were identified, with none of the critical issues disregarded by the 
model. This model is also a conservative one as some events classified as critical by the 
model were not considered the same level by the experts. 

The model (whose confusion matrix is reported in Figure 26) is therefore mostly accurate 
and most importantly does not disregard critical issues and can be used now by technical 
experts for automating the control of machines during manufacturing and during 
maintenance tests. 
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Figure 26 – Confusion matrix for the resulting predictions of the machine learning model for the 
drive train test, as compared to the expert labelling 

2.c.1.3 Applications 
  

The monitoring of critical machine components is made by specific applications in the My 
rConnect environment. These applications have been developed in two modules; the VEGA 
monitoring, for the spindle sensors and status, and the Machine Diagnosis application, 
covering a larger number of critical components of the machine, from the drive train to the 
chiller and the hydraulic system. 

Figure 27 to Figure 29 show the interface of the VEGA spindle diagnosis application. Figure 
27 shows the information on the spindle status which can be displayed in the interface, 
including identification number, axis and motor parameters, operation statistics and main 
sensor information in real time. 
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Figure 27 – VEGA Spindle diagnosis interface  

The application can go into a more detailed statistics and monitoring information about 
spindle sensor temperatures, as this is a critical indicator of the quality of the operation 
and potential failures with the system. This is represented in Figure 28. 

 

Figure 28 – VEGA Spindle diagnosis sensor statistics  

The application allows to gather information from different machines and spindles, verify 
its status and go into a more detailed assessment of each spindle condition (Figure 29). 
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Figure 29 – VEGA Spindle diagnosis for different machines and spindles in a shopfloor  

In a second step a second application, Machine Diagnosis, has been developed for 
covering a larger number of critical components, including the chillers, the axes, the drive 
train, the hydraulic system and different sensors around the machine for monitoring the 
environment and mechanics. The application integrates diagnosis algorithms based on 
data collection and labelling by experts, which enable to identify potential failures of the 
components and the machine, or identify quality issues on the part. The interface of the 
application is  in Figure 30.  

 

Figure 30 – Machine Diagnosis Application Interface  
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2.c.1.4 Key challenges and solutions for full-scale implementation 

The main challenges for the full-scale implementation of the application are related to the 
effectiveness of the diagnosis system. The solution needs to be adopted by the customers 
by gain their trust and helping them to improve the uptimes and reduce costs of 
maintenance of the machine. Although the algorithms reach an accuracy of 80%, the 
remained uncertainty can be detrimental to this adoption. 

The solution for the challenge is based in a first deployment to be done only at the level 
of service technicians. This stage will help to correct and improve the features of the 
application and the accuracy of predictions, so to enable the final fulfilment of the KPIs 
related to machine uptime and cost reduction. Once this is validated, a second stage will 
be implemented for deploying the solution at the level of end user customers. 

2.c.2 Industrial trials of the pilot  

2.c.2.1 Testing procedure and Barriers  

The industrial trials of the pilot are made in the following steps: 

• Tests at machine production: The system is part of the production line of the 
machine. The different critical components of the machine are tested using the 
new applications in order to verify the appropriate assembly and functional 
performances of the critical components. 

• Tests at service level: The system is tested during installation of the machine and 
during maintenance activities of the Service organisation, by specialised 
technicians. This phase guarantees performances at installation and supports the 
service technicians for diagnosing the machine during maintenance activities at 
the customer site. 

There are no barriers for these two phases, except the current potential issues for 
connecting the application, as a webservice, at the customer site. This is a generic 
potential issue for the My rConnect platform and its applications, and current procedures 
guarantee this deployment for different use cases. 

2.c.3 Final KPIs monitoring and validation 

2.c.3.1 Industrial Outcomes and Lessons Learned 

The following outcomes and lessons learned can be drawn from the KPIs evaluation and 
monitoring for the Machine Diagnostics application: 

• The VEGA Spindle monitoring and Machine Diagnostics applications are currently 
being deployed at internal machine production and services levels.  

• The applications will be part of a subscription package providing continuous 
diagnostics services and preventative maintenance based on the diagnostics 
recommendations 
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• The subscription packages will provide benefits regarding machine uptime and 
maintenance costs with respect to the current service, based on periodic 
maintenance and replacement of components after failure. 

• Both machine uptime and maintenance costs are the most critical factors affecting 
the production costs of customer parts, and preliminary feedback indicates a great 
interest by customer for implementing the packages and solution, which also 
influences the buying decision of the customers 

• Marketing activities for the solution will be oriented to the communication of such 
unique value proposition, guaranteeing uptimes and minimum costs of 
replacements, avoiding unexpected failures and expensive replacement of critical 
components. 

2.c.3.2 KPI Measurement and Performance Evaluation 

The KPIs for this business processed are represented in Table 3. There is a modification of 
the KPI no. 2, which was previously based on the Remaining Useful Time of key component 
before refurbishing, which should be minimised in order to reduce costs. This KPI is rather 
difficult to measure so it has been updated to reflect the machine maintenance costs 
reduction with the solution as compared to the current preventative situation, having thus 
a baseline of 0% reduction prior to the installation of the system. 

Table 3 – KPIs identified for BP3 

ID 

BUSINESS 
Indicators 

List the Business 
objectives 
expected for the 
Business 
Scenario/Use 
Case 

DESCRIPTION 

Give a detailed 
description of 
the indicators 

Unit* 
Initial 
value 

M18 
Value 

Expected 
final 
Value 

Expect. 

Date of 
achieve 
ment** 

1 Machine Uptime 

Productive 
machine time 
with respect to 
total available 
time 

% 80 % 90% 95% 2026 

2 
Maintenance 
costs for end 
user 

Cost reduction 
with respect to 
standard 
maintenance 
costs 

% 0% 20% 30% 2026 

  

2.c.3.3 Final KPI Assessment and Business Impact 

The solution is currently assessed at development and production levels. The first 
interesting outcome is the increase of efficiency at production for the control of critical 
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components and the identification of potential defects at assembly stages and final 
controls. There is also valuable feedback from field tests at customer level made by the 
company services organisation. In this particular case the estimated gain in machine 
uptime is of the order of 10% (from a baseline of 80%). The commercial deployment is 
expected to rise the accuracy of the solution and therefore the machine uptime by an 
additional 5%, to a maximum expected level of 95% by the customers. 

The preliminary feedback of field test customers indicates an improvement as well in the 
KPI of cost reduction related to maintenance. The current system is based on periodic 
controls and exchange of critical components based on mean time to repair statistics for 
each item. This does not take into account the changes in the production system at 
customer workshop level. The implementation of the new service, based on a subscription 
and continuous monitoring of the components gives now an estimated gain of 20%. During 
the deployment at large scale, the expectation is to achieve a cost reduction of 30%. This 
KPI will be carefully measured taking into account the historic costs of maintenance and 
replacement of failed components, which represents the most important factor for 
services expenses for the customers. 
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2.d Business Scenario 4 
This business scenario shifts quality control from a post-process activity to a proactive, 
in-process system. It focuses on integrating metrology directly into the machine tool to 
create a closed-loop feedback mechanism. This enables real-time compensation for 
machine geometry and part-setup errors and allows for dynamic adaptation of the 
machining program based on in-process measurements, significantly reducing scrap and 
ensuring final part precision. 

2.d.1 Full-scale implementation 

The full-scale implementation of the Adaptive Digital Manufacturing scenario was 
conducted within the industrial environment of the Fraisa facility. The setup was centered 
around a GF machine tool with a Siemens CNC controller, which was integrated with 
an advanced in-machine metrology solution. 

 

Figure 31 – Business Scenario 4 setup 

The physical implementation, as shown in Figure 31,  consists of a spindle-mounted 
touch probe for data acquisition, connected to a dedicated PC running the specialized M3 
metrology software, that served as the central edge computing component. It was 
responsible for orchestrating the measurement cycles and processing the data in real-
time. This setup enabled a direct communication link with both the machine's native 
Siemens CNC controller for closed-loop actions and with the GF myR-connect cloud 
platform for data aggregation and analytics. 
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This configuration was designed to validate the complete data flow, from physical 
measurement on the machine to the execution of adaptive corrections and the 
subsequent storage of quality data. 

2.d.1.1 Architecture 

The architecture for the Adaptive Digital Manufacturing scenario is designed as a hybrid 
system, integrating edge computing components with the machine tool's native controller 
and a cloud platform. The solution is centered around the M3 Metrology Software, a key 
component of the RE4DY Toolkit, which manages the in-process metrology operations. In 
this pilot, the M3 software was deployed on a dedicated PC. 

The key components and their interactions are as follows: 

• Machine Tool & Sensor: A GF machine tool is equipped with a spindle-mounted 
touch probe. This probe is the primary data acquisition device, physically 
interacting with the workpiece and machine artifacts, and feeding raw data to the 
edge component. 

• M3 Metrology Software: The M3 Metrology Software, running on the dedicated 
PC in this implementation, orchestrates the measurement routines, processes the 
raw data from the probe, and computes the necessary corrections and results. 
This software is capable of flexible deployment, potentially on other devices or 
directly integrated into advanced CNC controllers. 

• Control-Loop Integration (Machine Level): The M3 Metrology Software 
communicates directly with the Siemens machine controller (CNC). It sends 
critical data for real-time, closed-loop adjustments: 

o Machine Calibration Data: To compensate for geometric errors of the 
machine, utilizing an artifact for verification. 

o Part Alignment Results: To dynamically adjust the machining program's 
coordinate system, correcting the part's setup. 

• Analytical-Loop Integration (Platform Level): For monitoring, traceability, and 
higher-level analytics, the M3 Metrology Software sends the final measurement 
results in the standardized ISO 23952:2020 - Quality information framework 
(QIF)format to two destinations: 

o The GF myR-connect platform, which serves as the central data 
aggregator for the pilot. 

o The Siemens controller, for local data logging and quality verification 
purposes. 

This architecture effectively enables a closed-loop control system at the machine level 
while simultaneously pushing rich, structured quality data to a platform for broader 
analysis and process insight. 

2.d.1.2 Applications 
The core application utilized in the Adaptive Digital Manufacturing scenario is the M3 
Metrology Software from Datapixel (Figure 32), which serves as both the processing 
engine and the primary user interface. Deployed on the external Industrial PC, M3 is a 
comprehensive metrology software solution that enables several critical functionalities: 
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Figure 32 – Part measurement in the M3 software 

• Machine Calibration: The software allows for the verification and calibration of 
the machine tool's geometric accuracy using specialized artifacts. This process is 
fundamental to compensate for positioning errors and ensure the machine 
performs within specifications. 

• Part Alignment: M3 is used to measure the exact position and orientation of the 
workpiece once it is fixtured on the machine. It then calculates the necessary 
coordinate system adjustments to align the theoretical machining program with 
the actual part setup, a key step in adaptive manufacturing. 

• Measurement Program Development: Engineers use M3 to create and define 
complex measurement routines, specifying probe paths, feature definitions, and 
analysis parameters. 

• Measurement Execution: Operators can initiate and monitor in-process 
measurements directly through the M3 interface, ensuring the correct execution 
of the defined programs. 

• Measurement Simulation: The software provides simulation capabilities, 
allowing for the validation of measurement programs offline before their 
deployment on the machine, optimizing efficiency and preventing potential 
collisions. 

• Data Visualization and Analysis: M3 offers tools for visualizing measurement 
results, analyzing deviations, and generating reports, which are crucial for 
understanding the part's quality and the machine's performance. 

While the Siemens CNC controller acts as the recipient of correction data and the myR-
connect platform aggregates QIF results for broader analytics, the M3 Metrology 
Software is the direct application interface that facilitates all the key metrological tasks 
within the pilot. 

2.d.1.3 Key challenges and solutions for full-scale implementation 

Challenge: Limited Industrial Asset Availability  

The full-scale testing of the Adaptive Digital Manufacturing scenario was constrained by 
the limited availability of the designated industrial asset. The metrology software and 
sensor were integrated into a specific GF machine at the Fraisa facility, which was under a 
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time-limited lease. This lease expired before the complete test plan could be executed, 
posing a significant risk to the pilot's validation activities. 

Solution and Mitigation Strategy To mitigate this, a short-term agreement between GF 
and Siemens was secured, granting a brief extension. This window was sufficient to 
conduct one full round of testing, which successfully demonstrated the core capability of 
the architecture: metrology data was correctly extracted from the process and integrated 
with other data streams. To complete the pilot's objectives, further validation activities 
were carried out using the metrology equipment located at SSF (Figure 33). This 
equipment features a similar setup to the one at the Fraisa facility, ensuring the 
comparability and relevance of the results. 

 

Figure 33 – Metrology Equipment at the SSF used for the final tests 

2.d.2 Industrial trials of the pilot  

2.d.2.1 Testing procedure and Barriers  

The industrial trials were structured to validate the three core capabilities of the Adaptive 
Digital Manufacturing scenario as distinct components. Each component was tested 
individually to confirm its functionality and integration with the pilot hardware and 
software. 

• Machine Verification Trial (BP4-C1): This test focused on the ability to measure 
and compensate for the machine's geometric errors, both linear and rotatory axis 
related (see Figure 34). The procedure involved using calibrated artifacts (a 
tetrahedron and a sphere) placed within the machine's working volume. The M3 
software executed a measurement routine to capture the artifact's geometry, 
calculated the machine's kinematic errors (e.g., perpendicularity, positioning), and 
generated the corresponding compensation parameters for the controller. The 
objective was to verify the system's capability to perform a machine health check 
and calibration automatically.  
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Figure 34 – Multi-axis machine calibration 

• Adaptive Part Alignment Trial (BP4-C2): This trial validated the system's ability 
to correct for part setup inaccuracies. A workpiece was fixtured in the machine, and 
a measurement program based on its CAD model was run to identify its actual 
position and orientation. The trial successfully demonstrated that the M3 software 
could compute a roto-translation matrix and establish a new, corrected coordinate 
system, ensuring that the subsequent machining operations would be perfectly 
aligned with the part. 

• Automated Metrology & Feedback Trial (BP4-C3): This test demonstrated the 
in-process quality control capabilities. The trial consisted of executing a 
measurement program on a machined part to verify critical features against their 
CAD specifications. The key outcome was the successful generation of a 
measurement report in the standardized QIF format, confirming that the system 
could extract quality data and share it with other platforms like myR-connect for 
analysis and traceability. 

2.d.3 Final KPIs monitoring and validation 

2.d.3.1 Industrial Outcomes and Lessons Learned 
The outcomes of the Adaptive Digital Manufacturing pilot demonstrate a clear progression 
from foundational work and simulation to physical implementation and validation. The 
lessons learned reflect the maturity gained throughout this process. 

Phase 1: Foundational Work and Simulation  

The initial phase of the project focused on establishing the necessary groundwork in a 
controlled, offline environment. The key outcomes from this stage were: 
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• Definition of Data Exchange Standards: The data formats and schemas 
required for all adaptive processes were specified, with a focus on adopting the QIF 
standard for interoperability. 

• Offline Process Validation: The core functionalities of part alignment and in-
process measurement were developed and validated through simulation using 
CAD-based measurement programs. This allowed for the refinement of the logic 
without consuming machine time. 

• Development of Integration Components: The M3MH postprocessor, the 
software component required for the M3 software to communicate with the 
Siemens controller, was specified and implemented, preparing the ground for 
physical integration. 

Phase 2: Physical Implementation and Validation 

Building upon the foundational work, the next phase involved deploying and testing the 
solution in the industrial setting at the Fraisa facility. The main outcomes were: 

• Successful On-site Deployment: The M3 Metrology Software was successfully 
installed and proven to be fully functional on the target Siemens machine. 

• Demonstration of Core Capabilities: The three key capabilities were executed 
successfully on the machine: 

o Machine verification and calibration using a calibrated artifact. 
o Automated part alignment based on CAD data. 
o In-process quality measurement and the generation of standardized QIF 

data files. 
• Data Sharing and Integration: The pilot demonstrated the ability to share the 

generated QIF data through a Data Space connector, using the Innovalia Data 
Space infrastructure. 

Key Lessons Learned 

• The "Simulate First" approach is highly effective: The initial focus on 
simulation was crucial. It enabled a faster and lower-risk deployment in the 
physical phase, as most of the process logic was already validated. 

• Standardized data formats are essential for interoperability: The early 
definition and subsequent implementation of the QIF format were key to ensuring 
that the quality data was ready to be shared and consumed by other systems, like 
a data space. 

• Logistical planning is as critical as technical development: The primary 
lesson learned, reinforced by the project's challenges, is the critical importance of 
securing long-term access to industrial assets for the final stages of process 
evaluation and KPI validation. 

2.d.3.2 KPI Measurement and Performance Evaluation 

The performance of the pilot was evaluated against three specific business indicators 
identified at the project's outset. These KPIs focus on improvements in speed, quality, and 
overall efficiency. The verification method for these KPIs involves comparing the 
performance of the new automated process against the traditional, manual baseline. 
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Table 4 summarizes the expected performance for each KPI. 

Table 4 – KPIs identified for BP4 

ID 

BUSINESS 
Indicators 

List the Business 
objectives 
expected for the 
Business 
Scenario/Use 
Case 

DESCRIPTION 

Give a detailed 
description of 
the indicators 

Unit* 
Initial 
value 

M40 
Value 

Expected 
final 
Value 

Expect. 

Date of 
achieve
ment** 

1 
Machine 
Verification Time 

Time required to 
perform a full 
machine 
verification using 
an artifact. 

H 8 2 2 2025 

2 
Production Scrap 
Rate 

Percentage of 
non-conforming 
parts due to 
machining errors. 

% 5% 3% 1% 

1 year 
after 
the 
project 

3 
Production Cycle 
Time 

Overall time from 
raw part setup to 
finished part. 

Min 120 115 108 

1 year 
after 
the 
project 

 

Note on Verification: While the industrial trials successfully demonstrated the technical 
functionalities required to achieve these KPIs, the limited machine availability prevented a 
long-term statistical validation. The "Expected final Value" reflects the targets based on 
the successful execution of the automated routines in the controlled tests. The initial 
values are representative examples of a traditional manufacturing baseline. 

2.d.3.3 Final KPI Assessment and Business Impact 

The achievement of the defined KPIs through the RE4DY solution provides a significant and 
multifaceted business impact, directly addressing key areas of cost, quality, and speed. 

• Drastic Efficiency Gains in Maintenance and Setup: By making machine 
verification 4 times faster, the solution fundamentally changes the machine 
maintenance process. It transforms a lengthy, disruptive procedure that often 
requires specialized technicians into a rapid, automated routine that can be 
performed by the operator. This dramatically increases machine availability for 
production and reduces operational costs. 

• Substantial Reduction in Quality Costs: An 80% reduction in production 
scrap has a direct and massive financial impact. It minimizes wasted materials, 
energy, and machine time. By catching and correcting errors in-process, the 
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system prevents the production of faulty parts, leading to higher first-time-right 
rates, improved process reliability, and enhanced customer trust. 

• Increased Throughput and Competitiveness: The 10% improvement in overall 
production cycle time allows the company to produce more with its existing 
assets. This boosts manufacturing capacity, shortens lead times to customers, 
and increases the factory's overall agility and competitiveness in the market. 

In summary, the implemented solution goes beyond a simple technical demonstration; it 
provides a clear roadmap to a more efficient, reliable, and cost-effective manufacturing 
process.  
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3 Pilot 4: Avio Aero 

3.a Business Scenarios 1 & 2 

3.a.1 Full-scale implementation 
Business scenarios 1 and 2 implement an automated defect detection system for 
mechanical components within the aeronautical manufacturing domain, addressing 
specific limitations inherent in the manual inspection processes at Avio Aero.  

Currently, visual inspection at Avio Aero (business case 1) is conducted entirely manually, 
relying on human operators’ expertise without the aid of digital tools or intelligent 
decision-support systems. This manual approach introduces several critical 
challenges, including variability in defect classification due to subjective human 
interpretation and an increased risk of human error. To overcome these challenges, the 
business case focused on developing and training a machine learning (ML) model capable 
of analysing images of components and automatically identifying regions likely to contain 
defects.   

In addition to its operational use for automated defect detection, the trained model has 
also been exploited as a training tool to support the education of new maintenance 
personnel (business case 2). Specifically, a training module has been developed to 
support practical test/practice sessions, in which trainees are asked to analyse 
images of components and identify potential defects. Their responses are then compared 
against the predictions made by the ML model, which serve as objective references. Each 
trainee receives a score based on the accuracy and completeness of their responses, 
allowing for an objective skill assessment and a learning focused on the most challenging 
cases. This approach helps reduce subjectivity in the learning process and 
contributes to standardizing operator training. 

Given the distributed nature of the industrial environment - where multiple factories 
or production lines manage different components and maintain locally stored - often 
confidential datasets - the project employs a Federated Learning (FL) paradigm. FL 
facilitates collaborative model training without centralizing sensitive data. Each 
production site trains a local model on its proprietary dataset and shares only model 
updates (e.g., gradients or weights) with a central server. The server aggregates these 
updates to generate a shared global model. This decentralized approach preserves data 
privacy and complies with internal policies and external data protection 
regulations, while simultaneously enhancing the diversity and representativeness 
of the training data.  
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3.a.1.1 Architecture   

 

Figure 35 – RE4DY Toolkit <-> Reference Architecture Mapping 

The RE4DY Toolkit components (Figure 35) identified during the previous design and 
implementation phases, have proved well suited for the realisation, execution and 
validation of the solutions for business cases 1 and 2. Specifically, for these first two 
scenarios the following components have been adopted and further developed: 

• Component 6: CERTH XAI and Active Learning Platform for Defect Detection. 
• Component 9: ALIDA. 
• Component 14: KeyCloak. 

The implemented solutions are the result of the mutual integration between these 
components that, by working together, provide a seamless end-to-end user 
experience to data scientists and quality inspectors alike. The relations between the 
components selected for the Avio Aero use cases are depicted in Figure 36 below: 

 

Figure 36 – Diagram showing the relations between the RE4DY toolkit components selected for the 
Avio Aero use case 
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In particular, component 6 – the XAI service – complements the AI model for defects 
detection by providing further insights into the behaviour of the model. It does so by 
returning heatmaps highlighting the level of attention that the model has given to 
areas of the image. Component 9 – ALIDA – has provided data scientists with a 
convenient way to develop the AI/ML pipelines, supporting their deployment 
through docker. This component has also been extended with the Smart Vision 
Suite: a satellite set of applications enabling quality inspectors to view and 
manipulate model results.  Finally, access to the ALIDA platform has been securely 
managed by Component 14 – KeyCloak – which integrates with the project’s Single 
Sign-on (SSO) system to provide access to ALIDA. 

As for the enclosing deployment architecture (Figure 37), what follows describes how 
this has changed also highlighting its main strength points. More details on the 
specific RE4DY Toolkit components and how they have been further enhanced will be 
provided in the next sections. 

To start with, below (Figure 37) is highlighted - in green - the portion of architecture 
that has changed. 
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Figure 37 – Business Cases 1 & 2 Deployment Architecture 

In particular, it can be noticed that the execution of the Predict and XAI services now 
occurs on a GPU-equipped node. These services, originally deployed on the same 
VM hosting the Smart Vision Suite, happened to require more computational 
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resources, hence the need to move to a higher performing node. This possibility of 
rearranging workloads demonstrates the flexibility of both architecture and 
solutions.  

As for the development of the AI solutions, ALIDA has been successfully adopted by 
the data scientists to develop the BDA Applications (pipelines) using existing or customly 
built BDA Services (pipeline blocks, Figure 38). As a result, the ALIDA catalogue has been 
enriched with both custom-built BDA Services and ready-to-use BDA Applications, from 
where they can be shared with other platform users when necessary. 

 

Figure 38 – ALIDA pipeline development workflow 

From a computational resources’ standpoint, the availability of virtual machines with high-
end GPUs (Figure 39) has enormously sped up not only model training, but also the 
preliminary data analysis tasks and model inference. In the latter shortening the time 
required to obtain the predicted defects annotations during visual inspection in production 
or junior operator learning phase. 
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Figure 39 – GPU-equipped VMs for training and inference phases 

The same diagram (Figure 39) also shows a widespread use of dockerized ALIDA BDA 
Applications. The use of docker has noticeably simplified and accelerated the 
deployment and update of the solutions, also allowing for a quick redistribution of 
the workload across the nodes.  

Cybersecurity-wise, the arranged AWS virtual machines, network configurations and 
tools, have guaranteed safe access to data and computational nodes, both from the 
inside and outside of the Avio Aero network. 
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3.a.1.2 AI Models 

3.a.1.2.1 AI-based Defects Detection  
 

Dataset and defects labelling  

The dataset consists of 1,488 high-resolution images, evenly divided between 744 non-
defective samples and 744 images annotated with at least one defect. The distribution of 
defect types is as follows:   

• BRAZING SPOTS: 163 images (most frequent)   
• POSITIVE METAL: 139 images   
• CUT BACK: 108 images   
• DENT: 102 images   
• CAVITY: 92 images   
• DEFORMATION: 76 images   
• HIGH METAL: 64 images (least frequent)   

 
This distribution reveals a significant class imbalance, with the most frequent defect type 
(BRAZING SPOTS) appearing in more than twice as many images as the least frequent (HIGH 
METAL). The limited sample size and such class imbalance poses a major challenge for 
training machine learning models, as models tend to become biased toward the majority 
classes, leading to poor generalization and underperformance on underrepresented 
defect types. Based on best practices and empirical evidence in object detection, robust 
model training and reliable defect recognition typically require at least 1,500 images per 
class, along with a minimum of 10,000 instances (bounding boxes). The current dataset 
falls short of these benchmarks, potentially resulting in suboptimal detection accuracy.   

In addition to limited data volume and class imbalance, the dataset exhibits a critical 
annotation-related limitation: each image is labelled with only one defect type, even when 
multiple defects are visibly present. This incomplete labelling introduces semantic 
ambiguity and prevents the model from learning to detect multiple defect types that may 
occur simultaneously. In safety-critical domains like aerospace, such limitations can 
significantly compromise the reliability of automated inspection systems.  

To address this, future annotation efforts should adopt a multi-label, instance-level 
annotation approach, ensuring that all visible defects are accurately and consistently 
labelled to support more comprehensive and robust model training.   

Image Acquisition and Labelling: The data collection leveraged a custom-built industrial 
vision system designed for seamless integration within Avio Aero's in-line production 
processes. The system captures high-resolution images (5472×3648 pixels) of mechanical 
components under controlled positional and lightning configurations. This setup 
minimizes variability during acquisition, ensuring consistent visual conditions, and 
enhancing data quality for model training. Each inspection targets a single mechanical 
component, uniquely identified by its serial number. For every inspection, a fixed set of 
images was captured from predefined perspectives, with each view explicitly designed to 
highlight a specific Region of Interest (ROI) on the component surface.   
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The images adhere to a structured naming convention including an inspection identifier 
and a view identifier, enabling precise traceability of views per component. Binary masks 
were also provided for each image to isolate the ROI, filtering out irrelevant background or 
structural elements.  

Defect labelling was performed manually by experienced operators at Avio Aero. For each 
image, operators identified and annotated surface defects within the defined ROIs. 
Annotations were organized in a file mapping filenames to their associated defects. Each 
defect is represented by a defect code and a bounding box specifying the position and 
size of the defect within the image.  An important characteristic of the annotated defects 
is their size. In most cases, defects occupy only a very small portion of the total image 
area, making them visually subtle and difficult to distinguish from the background. This is 
especially true for defect types such as BRAZING SPOTS, POSITIVE METAL, CAVITY, which 
are represented by extremely small bounding boxes.  

These characteristics have been carefully considered during preprocessing and model 
design, as they directly affect the model ability to learn and detect small-scale 
anomalies.  

 

Proposed Methodology  

The preprocessing pipeline and model architecture were carefully designed to address 
the specific challenges identified in the dataset analysis—namely, the small size of 
defects, class imbalance, and incomplete annotations. These constraints necessitated a 
strategy that enhances defect visibility and supports scalable inference in high-
resolution industrial settings.   

Data processing Strategy: Given that most defects occupy only a small portion of the 
image, training on full-resolution images (5472×3648 pixels) would dilute the signal of 
interest, making it difficult for the model to learn meaningful features. Therefore, images 
were divided into overlapping 640×640-pixel patches, which increased the relative size of 
defects and improved their visibility.   

To reduce noise, crops were generated only within the ROI masks. Given the dominance of 
non-defective areas, a selective sampling strategy was employed—retaining all crops 
containing defects and sampling a subset of defect-free crops. This balance mitigates 
class imbalance and prevents the model from being biased toward background 
predictions.   

Data augmentation techniques such as random flips, rotations, and brightness/contrast 
adjustments were applied dynamically during training to improve model generalization 
and robustness.  

Model Selection: The object detection model selected for this project is YOLOv8. YOLOv8 
was selected for its proven performance in object detection tasks, particularly in detecting 
small and sparse objects. Its anchor-free architecture and improved feature fusion 
mechanisms make it well-suited for identifying small defects in high-resolution industrial 
images.   
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The model uses a convolutional backbone comprising Cross Stage Partial (CSP) modules 
and lightweight C2f (Concatenate to f) blocks to enhance gradient flow and reduce 
redundancy. A feature aggregation neck and decoupled detection head enable multi-
scale feature extraction and improved convergence. A Keras-compatible implementation 
was chosen for its flexibility in customizing training pipelines. 

Inference Method: While training is performed on localized crops, real-world deployment 
requires inference on full-resolution images. To bridge this gap, the system integrates 
Slicing Aided Hyper Inference (SAHI):   

• Slicing: During inference, each high-resolution image is divided into overlapping 
patches of the same dimensions used during training (640×640 pixels).   

• Model Prediction: The trained model is applied independently to each image slice.   
• Prediction Merging: Predictions from all slices are merged to produce a unified 

detection output.   

This approach ensures that small and spatially sparse defects are not missed, while 
maintaining the scalability and efficiency required for industrial inspection workflows.  

 

Pipelines  

Preprocessing Pipelines: The following section details the steps taken to prepare the data 
for training the model:   

1. ROI Masking: Binary masks provided by Avio Aero define ROIs. Pixels outside these 
regions are zeroed out to remove background noise. Bounding boxes outside the 
ROIs are discarded to maintain label consistency.   

2. Crop Generation: A sliding window with 320-pixel overlap generates 640×640 crops. 
For defective images, only crops containing bounding boxes are retained. For non-
defective samples, all ROI-aligned crops are kept. This ensures sufficient positive 
and negative samples.   

3. Dataset Split: The dataset is divided into 80% training, 10% validation, and 10% 
testing. Crops from the same original image are kept in the same split to prevent 
data leakage. Class distributions are balanced across subsets.  

Model Training Pipeline: The following section presents the steps taken to prepare pre-
processed data for training the model, the training strategies, and the model evaluation.   

1. Crop Sampling: To address the high prevalence of background-only crops, only a 
subset of non-defective crops is used. All crops with annotated defects are 
retained to maximize learning from scarce positive samples.   

2. Training: YOLOv8 is trained using sampled crops with on-the-fly augmentations. 
Early stopping based on validation metrics prevents overfitting and ensures 
optimal performance.  

3. Threshold Tuning: The model output is filtered using two key parameters: the 
confidence threshold and the Intersection-over-Union (IoU) threshold. The 
confidence threshold sets a minimum score required for the model to consider a 
prediction as valid, helping to eliminate uncertain or spurious detections. The IoU 
threshold is used during Non-Maximum Suppression (NMS) to determine whether 
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predicted overlapping bounding boxes should be merged, which prevents multiple 
detections of the same defect. Both thresholds are fine-tuned on the validation set 
to maximize the F1-score, ensuring a balanced trade-off between precision and 
recall.   

4. Evaluation: Model performance is assessed using the SAHI framework, which 
enables robust inference on high-resolution test images. To determine detection 
accuracy, standard object detection metrics are reported: precision (the 
proportion of predicted defects that are correct), recall (the proportion of actual 
defects that are detected), and F1-score (the harmonic mean of precision and 
recall). A predicted bounding box is considered a true positive if the IoU with the 
ground truth bounding box is at least 25%.  

 
Experiments  

To validate the proposed defect detection approach and understand its behaviour under 
different levels of complexity, two experiments were conducted: Single-Defect Detection 
and All-Defects Detection. The first experiment simplified the task by focusing on a single, 
visually distinct defect type, while the second introduced the full range of available 
annotations to simulate more realistic conditions. This progression – from simple to 
complex – helps assessing the model performance in both controlled and practical 
scenarios.     

Single-Defect Detection 

The first experiment focused solely on detecting the cut back defect. This type was chosen 
because it is typically larger, more visually distinct, and easier to identify than other 
surface anomalies in the dataset. For this experiment, only the bounding boxes 
corresponding to cut back defects were retained in the training set; all other annotations 
were excluded. This served as a controlled baseline to evaluate the model ability to detect 
a well-defined defect under simplified conditions.  

Data: To ensure the model was trained effectively on the target defect, the following 
sampling strategy was applied:   

1. Positive Samples (Cut Back Defects): All crops containing at least one annotated 
cut back defect were included in the training set. This ensured the model had full 
exposure to every available example of the target class.   

2. Other-Defect Samples (Treated as Background): A number of crops equal to 50% of 
the positive samples were randomly selected from images containing other types 
of defects. These other defects were not annotated, so the model treated them as 
background.   

3. Background-Only Samples: Another 50% (relative to the cut back samples) were 
randomly selected from crops with no annotated defects at all. These served as 
pure background examples to help the model distinguish defect-free regions.   

This sampling strategy resulted in a dataset composed of 1,044 training crops, 48 
validation crops, and 124 test crops, all tailored to evaluate the ability of the model to 
detect a single, well-defined defect under controlled conditions.   
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Results: Bounding box level metrics evaluate the model ability to detect and localize each 
individual defect. Each predicted bounding box is compared against ground truth 
annotations to determine whether it correctly identifies a defect. This provides a detailed 
view of how well the model performs at the object level, especially when multiple defects 
appear in a single image.   

From the performance metrics in Table 5, we see that:   

• Precision (0.26): Only 26% of the predicted bounding boxes corresponded to actual 
defects. The model frequently misclassified background regions or other defect 
types as Cut Back, resulting in a high number of false positives.   

• Recall (1.00): The model successfully detected all actual Cut Back defects. This is 
especially important in safety-critical contexts like aerospace, where missing a 
defect is unacceptable. 

• F1-score (0.41): This metric balances precision and recall. While the model 
demonstrates excellent sensitivity, its low precision reduces overall reliability.   

Table 5 – Single-Defect Detection MODEL Performance Metrics 

Metric  Value  

PRECISION  0.26  

RECALL  1.00  

F1-SCORE  0.41  

 

The confusion matrix in Figure 40 reveals that:  

• The model correctly identified 11 Cut Back defects but also misclassified 2 
Deformation and 1 High Metal defects as Cut back.  

• Background regions were incorrectly predicted as Cut Back, significantly 
contributing to the false positive count.   
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Figure 40 – Single-defect detection mode confusion matrix 

Examples: To illustrate the performance and behaviour of the trained model, 
representative prediction examples are presented in this section. In the figures below:   

• Green bounding boxes represent the ground truth annotations.   
• Blue bounding boxes represent the model’s predictions.   

These examples were selected from the test set and demonstrate the model’s ability and 
limitations to detect cut back defects.   

 

 

Correct Prediction – Cut Back Defect Detected   

 

Figure 41 – Single-defect Model – Correct Prediction 

Figure 41 shows an example of a correct prediction, where the model properly identified a 
cut back defect. The predicted bounding box closely matched the ground truth 
annotation.   
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Wrong Prediction – Background Misclassified as Defect 

  

 

Figure 42 – Single-defect model – Background misclassified as defect 

 As shown in Figure 42, the model incorrectly predicted a cut back in a region with no 
annotated defect. This false positive likely stems from background textures that visually 
resemble known defect patterns, indicating a need for more diverse background examples 
during training.   

 

 

 

 

 

 

 

WRONG PREDICTION – WRONG DEFECT TYPE DETECTED    

 

Figure 43 – Single-defect model – Wrong defect type 
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In Figure 43, two deformation defects were misclassified as cut back defects. Although the 
model correctly localized the anomalies, it assigned the wrong class label. This suggests 
difficulty in distinguishing between visually similar defect types, especially when training 
data is limited.   

LABELLING AMBIGUITY – PREDICTION WITHOUT GROUND TRUTH   

 

Figure 44 – Single-defect model – Prediction without ground truth 

Figure 44 illustrates a case where the model predicted a Cut Back defect in a region that 
appears visually defective. The image contains two annotated Dent defects, but no 
annotation for the predicted Cut Back. Upon inspection, the prediction appears valid, 
suggesting the presence of a third, unlabelled defect within the Region of Interest (ROI). 
This example highlights a known limitation in the dataset: only one defect type was 
annotated per image, even when multiple types were visibly present. As a result, valid 
predictions like this are incorrectly counted as false positives.   

Summary: This experiment demonstrates that the model is highly sensitive to detecting 
Cut Back defects, achieving perfect recall with no missed detections. However, it also 
shows limited specificity, frequently misclassifying background regions or other defect 
types such as Cut Back, resulting in a high number of false positives.   

While this trade-off may be acceptable in early-stage or safety-critical applications - 
where false positives are preferable to false negatives - it highlights critical areas for 
improvement:  

• Annotation Quality: Some false positives may be attributed to missing or 
incomplete labels in the dataset. In some cases, the model correctly identifies 
defects that were not annotated, which are then incorrectly counted as false 
positives. This underscores the need for a more comprehensive and consistent 
annotation strategy that captures all visible defects in each image.   

• Background Sampling Strategy: The current training setup includes only a 
sample of background-only crops. Further experiments should be conducted to 
fine-tune the ratio of background to defect-containing samples in the training set. 
Increasing the number of background crops or improving their selection could help 
reduce the false positive rate without compromising specificity.   

• Limited Dataset Size: The overall volume of annotated data is relatively small, 
especially when considering the diversity of defect types and the need for robust 
generalization. The limited number of examples per class restricts the model’s 
ability to learn nuanced distinctions between defects and background. Expanding 
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the dataset—both in terms of the number of images and the variety of annotated 
defects—is essential for improving model performance and reliability.   

 

All-Defects Detection 

In the second experiment, the model was trained using all available annotations in the 
dataset. Unlike the first experiment, no filtering was applied—every labelled defect, 
regardless of class, was included in training. This configuration represents the target use 
case for the system: detecting diverse surface anomalies within high-resolution industrial 
images.   

Data: The following sampling strategy was applied:   

1. Positive Samples: All crops containing at least one annotated defect.   
2. Background Samples: Another 50% (relative to the positive samples) were 

randomly selected from crops with no annotated defects.    

This sampling strategy resulted in a dataset composed of 4,213 training crops, 492 
validation crops, and 571 test crops.   

Results    

Table 6 – All-DEFECTs DETECTION MODEL PERFORMANCE METRICS 

Metric  Value  

PRECISION  0.20  

RECALL  0.36  

F1-SCORE  0.26  

 

From the performance metrics in Table 6, we see that:   

• Precision (0.20): Only 20% of the predicted bounding boxes were correct. The model 
frequently misclassified background or other visual patterns as defects, leading to 
a high number of false positives.   

• Recall (0.36): The model detected just over one-third of the actual defects. While 
this is a drop from the single-defect experiment, it reflects the increased 
complexity of detecting multiple defect types.   

• F1-score (0.26): This score reflects the trade-off between low precision and 
moderate recall, indicating that the model struggles to balance sensitivity and 
specificity in a multi-class setting.   

The confusion matrix in Figure 45 reveals that the model often misclassifies defects or fails 
to detect them altogether. While some correct predictions are made, a significant number 
of false positives and false negatives are observed across all defect categories. This 
indicates that the model has difficulty distinguishing between different defect types and 
background regions, especially when defects are small, visually similar, or 
underrepresented in the training data.   



D5.3. Industrial pilot area validation  
& pilot benchmark and KPIs_Process Operations 

 Horizon Europe Grant Agreement ID: 101058384 
Page 72 of 141 

 

 

Figure 45 – All-defect detection model confusion matrix 

Examples: This section presents representative prediction examples to illustrate model’s 
behaviour when trained on all available defect types. The same visual convention is used:   

• Green bounding boxes indicate ground truth annotations.   
• Blue bounding boxes indicate model predictions.   

 

 

Correct Prediction – Small Defects Detected   

Figure 46 shows the successful detection of three small Positive Metal defects. Despite 
the very limited pixel area occupied by the defects, the model accurately localized the 
three defects. The bounding boxes closely align with the ground truth annotations, 
demonstrating the model’s ability to detect subtle surface anomalies in high-resolution 
images.   
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Figure 46 – All-defect model – Correct Predictions 

Labelling Ambiguity – Small Defects Not Annotated   

Figure 47 presents a case where the model predicted two small defects: one labelled as 
Brazing Spots and another as Positive Metal. However, the image contains no annotated 
defects. While it is not possible to confirm the correctness of these predictions without 
expert validation, the predicted regions appear visually consistent with known defect 
patterns. This suggests a likely case of missing annotations, where valid predictions are 
incorrectly counted as false positives.  

 

Figure 47 – All-defect detection model – Predictions with no ground truths 

Summary: This experiment highlights the challenges of scaling from single defect to 
multi-defects detection. While the model retains some ability to detect defects, its 
performance drops significantly in terms of both precision and recall. The high number of 
false positives suggests that the model is overly sensitive to visual patterns that resemble 
defects, while the high number of false negatives indicates that many actual defects are 
being missed.   

The issues identified in the single-defect experiment remain relevant here—particularly 
the need for more comprehensive annotations and a better-tuned background sampling 
strategy. However, the multi-defect setting introduces additional complexity due to the 
low number of examples per class, especially across the wide variety of defect types. This 
scarcity limits the model’s ability to generalize and accurately distinguish between 
different defect categories and background features.   
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Despite these limitations, the approach remains promising. The model demonstrates the 
ability to detect even very small and subtle defects, which is a critical capability in high-
precision manufacturing environments. With further improvements in data quality, class 
balance, and training strategies, the system has strong potential to evolve into a robust 
and scalable solution for real-world industrial inspection.  

The study described has demonstrated that automated defect detection using deep 
learning holds strong potential for aeronautical manufacturing, particularly in identifying 
even very small and subtle defects that are often missed during manual inspection. 
However, the current system still faces limitations that must be addressed to improve its 
reliability.   

One of the most pressing issues is the quality and completeness of the annotations. In 
many cases, only a single type of defect is labelled per image, even when multiple defects 
are visibly present. This not only limits the model’s ability to learn from co-occurring 
defects but also leads to false positives when the model correctly identifies unlabelled 
defects. A more comprehensive and consistent annotation strategy is needed to ensure 
all visible defects are accurately captured.   

Another significant constraint is the limited size of the dataset. The number of images and 
defect instances per class falls short of the thresholds typically required for robust object 
detection. This restricts the model’s ability to generalize and to distinguish between fine-
grained defect variations and background patterns. Expanding the dataset in both volume 
and diversity is essential to improve model robustness.   

Further parameter tuning and experimental validation are necessary. Optimizing model 
thresholds and refining data sampling strategies will be key to achieving a better balance 
between sensitivity and precision. The current training configuration includes a sample of 
background-only crops. Further experiments are needed to fine-tune the ratio of 
background to defect-containing samples. Increasing the number of background crops or 
improving their selection could help reduce the false positive rate without compromising 
specificity.   

With the federated learning infrastructure already in place, future work can also explore 
scaling the system across multiple production sites. This would enable collaborative 
model training while preserving data privacy, ultimately supporting a more scalable and 
secure deployment of automated defect detection in industrial environments.    

 Explainable AI (XAI)  

To complement the AI model for defects detection by providing further insight into the 
behaviour of the model, heatmaps are returned that highlight the level of attention given 
by the model to areas of the image. This is achieved by further optimizing the D-RISE XAI 
technique3. 

 
3 Petsiuk, V., et al.: Black-box explanation of object detectors via saliency maps. In: 
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 
(CVPR). pp. 11443–11452 (June 2021) 
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The heatmap is intended to be read as a visual explanation of the decision. Stronger 
influence is indicated by warmer colours such as red and yellow, while weaker influence is 
indicated by cooler colours such as blue. A bright region indicates where the model found 
the most evidence for a defect. The heatmap does not by itself confirm that a defect exists. 
Rather, it shows where the model looked in order to reach its decision. 

In practice, good heatmap alignment is expected to overlap with the annotated defect 
region in the ground truth. When attention appears in unrelated areas, potential issues 
may be indicated, such as confusing background patterns, gaps in the annotations, or 
model shortcuts. These signals are used to guide data review, support model debugging, 
and communicate results to engineers and domain experts in an accessible way. 

In details, the D‑RISE explainable AI technique has been extended to support models 
stored in h5 format, thereby broadening its applicability across a wider range of neural 
network frameworks. Soft masks are now generated through interpolation rather than 
using binary masks, which allows for more nuanced attribution of pixel importance. In order 
to focus on the most informative regions, predicted masks whose intersection over union 
with the input exceeds a specified threshold are retained for further analysis. Saliency 
maps are accumulated by performing element‑wise multiplication of each mask with its 
associated score before summation, replacing the previous tensor‑dot approach to 
improve computational efficiency. 

A fallback mechanism has been implemented to enable batch processing on the CPU when 
GPU resources are insufficient, or memory constraints are encountered. This ensures that 
the technique remains robust under varying hardware conditions and can be deployed in 
environments with limited computational power. The extended D‑RISE method has been 
applied to a newly curated defect localization dataset, and the resulting heatmaps have 
demonstrated strong alignment with the ground‑truth annotations, indicating that the 
saliency outputs accurately highlight defect regions as, it can be seen on Figure 48. 

 

 

Figure 48 – Saliency Map generated by XAI indicating the RoI of the defect detection model. 

An API for the extended explainable AI technique has been developed using the FastAPI4 
Python library, and an initial integration into the company’s existing defect inspection 
pipeline has been achieved. Through this API, end users can submit images or model 
references and receive corresponding saliency heatmaps in a standardized format. 

 
4 https://github.com/fastapi/fastapi 

https://github.com/fastapi/fastapi
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Further validation and user‑experience testing are underway to ensure seamless adoption 
and to refine performance under real‑world conditions. 

3.a.1.3 Applications  
The updated Smart Vision Suite integrates with the newly introduced eXplainable AI (XAI) 
Service and introduces a number of enhancements to the existing features.  

XAI Service 

Both Inspect & Validate and Learn applications now also query the XAI Service through 
a new dedicated API shown below in Figure 49. 

 

Figure 49 – Updated Smart Vision Suite architecture showing the XAI module and corresponding API 

The image of the piece under inspection is sent to the service and the resulting heatmap 
is overlaid to the original piece image. At that point, the users can visualize the heatmap, 
the annotations and correlate the two sets of information to obtain a better understanding 
of the model behaviour; this while retaining the ability to modify the annotations as 
needed. 
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Figure 50 – Example of heatmap returned by the XAI Service superimposed to the image of the 
piece 

On the UI/UX side, the annotator view now features a new graphical element - the XAI 
Service Status Indicator – composed of a status indicator and a button (eye icon of Figure 
51): 

 

Figure 51 – XAI Service status indicator zoom in 

 

Figure 52 – Updated toolbar featuring the XAI Service status indicator 

The eye button allows users to toggle the visibility of the heatmap, while the status 
indicator (question mark symbol and descriptive string in Figure 52) informs users about 
the status of AI explanation retrieval by assuming the possible statuses of: 

• Retrieved: the application has obtained the explanation from the XAI service, and it 
is ready to show it to the user. 

• Retrieving: the request has been sent, and the application is waiting for a response 
from the XAI service. 

• Not Available: it has not been possible to obtain the explanation from the XAI 
service. 

Updates to the Existing Features 

As for the existing features, they have been enhanced to increase the robustness and 
maintainability of the suite.  
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Backend: First of all, the configuration subsystem. In the previous version, this subsystem 
– according the official NextJS approach – would force to rebuild the applications every 
time a client side-related setting had to be changed. This meant having to go through 
lengthy build stages and prevented changes to the configuration without access to the 
source code. To overcome these issues, a simple yet effective server-side loading 
mechanism now takes care of loading these client-specific settings from the configuration 
file and pass them to the browser as needed. The result is a more effective, flexible, faster 
and cleaner configuration experience. Another backend-side update concerned the 
logging sub-system. Its broader adoption across the code base, enables a closer 
traceability of the operations, especially useful in case of troubleshooting or auditing. 
Regarding the interaction with the data stores, the AWS S3 storage interface 
implementation has been equipped with an automatic access token refresh mechanism. 
Finally, changes to the docker deployment configuration allow for a better network 
segregation of backend services, thus increasing the level of security. 

CI/CD: A GitLab CI/CD pipeline ensures that every time a push is made, a new docker image 
for the suite is built. This way, when the suite needs to be updated, it is generally sufficient 
to adapt the configuration file, pull the new image and restart the docker service to have 
the latest version up and running. Moreover, a set of automatic end-to-end tests 
developed using the Playwright framework relieves the user from manually testing the 
applications speeding up the development process. Moreover, these tests can also be run 
as part of a CI/CD pipeline, where a dedicated job executes them remotely against an 
instance of the Smart Vision Suite.  

Deployment: A distribution package – composed of a predefined tree of directories, 
configuration files, docker compose files and scripts – has been developed. This package 
simplifies the deployment on new hosts ensuring the reproducibility of the process. Some 
of the scripts also contain utility commands that ease the prerequisite packages 
installation. 

User Interface: The changes to the user interface make it: 

• More responsive 
• More efficient in the use of visual space 
• Support full screen 
• Feature tooltips to better guide users 
• Present a more homogeneous look and feel 

3.a.1.4 Key challenges and solutions for full-scale implementation  
 

One of the main challenges was to access piece images available only at shopfloor level. 
Due to the strict cybersecurity regulations in place, it was not possible to obtain direct 
remote access to the shopfloor. To overcome this barrier, it was decided to leverage a 
relay S3 bucket accessible only through VPN-equipped Avio Aero laptops. The bucket, still 
directly connected to the shopfloor via a cybersecurity-compliant workflow, could now be 
well protected through the configuration mechanisms provided by AWS.  Alternatively, and 
in case of small data extractions, the Avio Aero-developed DexTool was used to transfer 
data to the outside in a secure and compliant manner.  



D5.3. Industrial pilot area validation  
& pilot benchmark and KPIs_Process Operations 

 Horizon Europe Grant Agreement ID: 101058384 
Page 79 of 141 

 

The second challenge concerned the quality of the dataset. The analysis reported in 
previous sections has in fact revealed these main addressable points of attention: 

• Limited size of dataset 
• Small size of defects 
• Class imbalance 

To address the limited size of the dataset, data augmentation techniques were employed. 
Small-sized defects were dealt with by dividing the original (high-res) images into smaller 
crops so as to increase the relative size of the defects. Moreover, the YOLOv8 model was 
detected as well-suited for the identification of small defects. 

To reduce noise, crops were generated only within the ROI masks. Given the dominance of 
non-defective areas, a selective sampling strategy was employed—retaining all crops 
containing defects and sampling a subset of defect-free crops. This balance mitigates 
class imbalance and prevents the model from being biased toward background 
predictions. 

3.a.2 Industrial trials of the pilot  

3.a.2.1 Testing procedure and Barriers  
The main barrier encountered while deploying and testing the tools on the Avio Aero IT 
infrastructure was the need to be compliant with the strict cyber security regulations. 
Access to the virtual machines and data storage could only occur from within the Avio 
Aero network and with Avio Aero-compliant computers. Therefore, it was necessary to 
assign and ship to each developer or system administrator requiring access to the 
infrastructure, a certified laptop bound to personal SSO credentials. From the laptop 
at that point was possible to access the Avio Aero network through a VPN and to the 
specific virtual machines through CyberArk. The use of IDEs and graphical tools were 
activated through a particular CyberArk configuration.  

3.a.3 Final KPIs monitoring and validation 

3.a.3.1 Industrial Outcomes and Lessons Learned  
 

The Industrial Pilot implementation for Business Scenario 1, assumes different business 
key factors: 

• Quality Improvement: More accurate and timely identification of defects, 
reducing the risk of human error and improving the overall quality of the produced 
parts. 

• Operational Efficiency: Reduction in inspection times thanks to the automation 
of the defect detection process. 

• Cost Reduction: Minimization of waste and costs associated with reworking 
defective parts. 

• Continuous Learning: AI models can be continuously trained and improved to 
adapt to new types of defects or materials. 



D5.3. Industrial pilot area validation  
& pilot benchmark and KPIs_Process Operations 

 Horizon Europe Grant Agreement ID: 101058384 
Page 80 of 141 

 

• Decision Support: Generation of useful data for analysis and strategic decisions, 
such as improving production processes. 
  

Based on the performance levels achieved by the Yolo8 model during the training phase, 
a key outcome is the need to improve image quality during the data collection phase. 
Despite the study on the focus areas of geometry and the definition of the corresponding 
image acquisition points for the same part to be inspected, the image quality does not 
always allow for the correct identification of defect presence. This results in the AI models 
failing to uniquely recognize defect characteristics, thereby introducing a series of false 
positives in the model's inferences. 

An in-depth analysis was conducted through a Design of Experiment (DoE), to identify the 
parameters impacting image quality and their optimal combination for each defect type. 

Specifically, a study was completed by collecting images of turbine blades using 
photometric stereo technology to assess whether this technology could enhance the 
process of detecting small defects compared to image acquisition based on different 
positions and angles of the inspected part (see Figure 54). 

The Dome implemented (Figure 53) has dozens of programmable LEDs which can be run 
independently of each other allowing to illuminate only the area specified by the user. 
When the photos are done with the help of dedicated software they are assembled in 
single image. There are few types of images specified by direction and type of information: 

• Inclination Horizontal  
• Inclination Vertical  
• Roughness Horizontal  
• Roughness Vertical 

 

Figure 53 – Design of Experiment – Set-up 
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Figure 54 – Example of filters application 

 

The Variables identified for Design of Experiment included:  

• Filter Type 
• Type of exposure:  
• Sequence (Illuminating the area and taking photos) 
• Overlay method (Camera takes data, illuminating the area, photo taken)  
• Illumination correction 
• On/Off (Additional illumination correction in the photo at the price of visibility of 

the examined area) 
 

Figure 55 summarises the variables combined for the Design of Experiment. 

 

Figure 55 – Summary of the variables for DoE 
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Several tests on various acquisition points (views) and for different defects enabled the 
identification of the optimal combination of parameters to highlight the characteristics of 
the detected defect. 

In order to illustrate the approach taken, the example below outlines the process 
conducted for a specific view, which focuses on the central area of the blade, as shown in 
Figure 56: 

 

Figure 56 – Example of view 

In particular, the previous view included three defects (2 positive material e 1 cut back, 
highlighted in Figure 57). 

 

Figure 57 – Example of View with highlighted defects 

In Figure 58 is reported the same image to which the optimal combination of filters has 
been applied, allowing for a comparison with the previously captured real image: 
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Figure 58 – Example of view with filter applied 

In particular, starting from the initial image several filters have been applied, as shown in 
Figure 59 and Figure 60: 

 
Figure 59 – Inclination Horizontal/Vertical 

 

 
Figure 60 – Roughness Horizontal/Vertical 
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Defect 1: 
Positive 
Metal 

  
 

  

Defect 2: 
Positive 
Metal 

 
  

  

Defect 3: 
Cut back 

     

Figure 61 shows the filters comparison for each kind of defect included in the main 
picture: 
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Defect 1: 
Positive 
Metal 

  
 

  

Defect 2: 
Positive 
Metal 

 
  

  

Defect 3: 
Cut back 

     

Figure 61 – Filters comparison 

Following this approach for a subset of defects, it was possible to identify the optimal 
parameters to enhance image quality for these defects during the acquisition phase. 
Figure 62 reports the table of the key results: 
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Figure 62 – Summary table of results 

This will enable more accurate results during the training phase of the models, better 
highlighting the characteristics of individual defects and making more effective use of the 
available dataset. 

The Industrial Pilot implementation for Business Scenario 2 (Training Quality Inspector) 
revises the current certification process for junior operators in the role of inspector by 
proposing a training approach based on models trained to recognize defects in Pilot 1. 

The advantages of having a training process for the certification of visual inspection 
operators based on artificial intelligence (AI) models are: 

• Improved Accuracy and Quality: AI can identify defects or anomalies with 
greater precision compared to traditional methods, reducing the risk of human 
error and enhancing overall product quality. 

• Process Standardization: AI ensures that all operators are trained according to 
uniform criteria, eliminating subjective variations and ensuring inspections are 
conducted consistently. 

• Operational Efficiency: AI can speed up the training process, reducing the time 
required to certify operators and increasing productivity. 

• Adaptability and Continuous Learning: AI models can be continuously updated 
and improved, allowing operators to learn new techniques and adapt to changes 
in inspection requirements. 

• Cost Reduction: Using AI can lower costs associated with traditional training, such 
as educational materials, instructors, and downtime. 
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• Decision Support: AI can provide real-time feedback to operators during training, 
helping them better understand their performance and improve quickly. 

During the testing phase of the Smart Vision Suite tool (shown in Figure 63), the software 
was used by a junior inspector who was provided with a series of images containing 
defects. By analysing and recording the operator's responses, real-time feedback was 
provided, allowing the operator to get immediately acknowledged about any possible 
mistakes. 

 

Figure 63 – Operator usage 

The primary outcome from the testing phase is that the on-the-job training phase should 
not be entirely replaced by the Smart Vision Suite tool. This is because a fundamental part 
of the learning process involves other senses, such as touch, and characteristics that can 
be better appreciated in person rather than through a picture. 

The tool, furthermore, introduces a competency verification methodology that is not 
currently managed in the existing process and could therefore be effectively applied as: 

• Complementary training to on-the-job training: Optimizing training time by 
providing access to a variety of defects that may not be available on actual parts 
during the on-the-job training period. 

• Competency testing: Introducing a method to certify the skills acquired during 
the training phase. 

• Competency refresh: Establishing a structured method that allows operators to 
both update their knowledge on new defects that may arise from a quality 
perspective and verify that their competency level remains consistent over time. 
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3.a.3.2 KPI Measurement and Performance Evaluation  
The three key performance indicators for Pilots 1 and 2 are reported in Table 7.   

Table 7 – Pilot 1 and Pilot 2 KPIs 

ID   
BUSINESS 
Indicator   

 DESCRIPTION   Unit*   Initial value   

1   
Reduce quality 
control time on 
the final product   

The use of the software 
will speed up the quality 
control process   

Minutes 
dedicated to 
quality check   

16min 

2   

AI Software 
recognizes the 
same defects the 
operator does   

To help to operator the 
software must has a good 
reliability   

Numbers of 
defect recognized 
by the software    

NA   

3 
Reduce the 
number of 
trainings hours  

Using learning software 
could simulate higher 
volume production  

Hours needed for 
training  

480  

 

The performance evaluation has been conducted depending on the KPI to be assessed. 

For KPIs related to Pilot 1, performance evaluation was conducted using two different 
approaches. 

Regarding the first KPI, which focuses on reducing the quality control time for the final 
product, timed measurements were carried out on the automated inspection process and 
compared with the manual process. 

For the second KPI, which concerns the accuracy of the AI software in recognizing the same 
defects as the operator, metrics were defined to assess the accuracy achieved by the AI 
model in defect recognition. 

Specifically, the dataset was divided into 80% training, 10% validation, and 10% testing. The 
percentage of test images was used to measure the accuracy achieved by the model, 
using the following metrics: 

• Precision: the ability of a classification model to identify only the relevant data 
points. 

• Recall: the ability of a model to find all the relevant cases within a dataset.  
• F1-score: the average of precision and recall, measuring the model’s predictive 

performance. 

Finally, the confusion matrix for all-defect identification has been evaluated 

Regarding the third KPI on reducing the number of training hours, an evaluation was 
conducted by considering the number of different types of defects observed on a specific 
Part Number over the past year and relating this value to the total number of possible 
defects. 
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By narrowing the analysis to only the types of defects observed in the past year and for 
which the AI algorithm was trained, starting from the number of hours required in the 
current certification process for a junior operator, the number of different defect types that 
were observable was assessed. This data was then correlated with the algorithm's ability 
to present all the defects observed during the acquisition period and samples bench 
available in production. 

3.a.3.3 Final KPI Assessment and Business Impact  

The first KPI evaluation of reducing the quality control time on the final product (Table 8) 
confirm the value already measured in M18.  

Table 8 – Pilot 1 and Pilot 2 Final KPIs 

I
D   

BUSINES
S 
Indicator   

DESCRIPTIO
N   

Unit*   

Initia
l 
valu
e   

Expecte
d value   

Expected 
date of 
achievement
**   

Current KPI 
assessme
nt 

1   

Reduce 
quality 
control 
time on 
the final 
product   

The use of 
the software 
will speed up 
the quality 
control 
process   

Minutes 
dedicated 
to quality 
check   

16min -10%   
End of 
implementatio
n   

9min (-44%) 

2   

AI 
Software 
recognize
s the 
same 
defects 
the 
operator 
does   

To help to 
operator the 
software 
must has a 
good 
reliability   

Numbers 
of defect 
recognize
d by the 
software    

NA   85%   

Before 12 
months after 
the 
implementatio
n   

30% 

3 

Reduce the 
number of 
trainings 
hours  

Using learning 
software could 
simulate 
higher volume 
production  

Hours 
needed for 
training  

480  -10%  

End of 
implementation  

  

330h (-25%) 

 

The previous manual process included four steps:  

1. Taking the part (1 minute).  
2. Checking the serial number (2 minutes).  
3. Conducting a manual visual inspection of the part (10 minutes).  
4. Reporting the findings (3 minutes).  

 
This totalled 16 minutes for the manual inspection process of each part.  
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The implemented automated process follows the same initial steps of taking the part. But 
then reduces the inspection time by utilizing a RoboCam to capture pictures and applies 
an AI algorithm to detect defects. The new automated process includes these four steps:   

1. Taking the part (1 minute). 
2. Checking the serial number (2 minutes).  
3. RoboCam and AI algorithm defect recognition (3 minutes).  
4. Reporting the findings (3 minutes).  

 
The new process brings the total process time to 9 minutes. This represents a 44% 
reduction in time from the manual process, which is highly satisfactory compared to our 
expected 10%-time reduction.   

The second KPI, "AI software recognizes the same defects the operator does," has been 
measured by evaluating the metrics calculated for all-defect detection model in Section 
3.a.1.2.  

Assuming all defects known in the dataset have been classified as ground truth by the 
inspectors, as anticipated, only 20% of predicted bounding boxes by model were correct, 
leading to a high number of false positives. The model detected just 36% of the actual 
defects, due the complexity of detecting multiple defect types. 

The quality of pictures in data collection should improve this result, increasing the 
reliability of the software to help the operator. 

The third KPI on reduction of number of training hours has been measured analysing the 
number of visual defects detected during last year operations. An assumption has been 
made, considering the outcomes gave from the senior operators during the test phase: to 
consider a combination between training provided by the tool and training on-the-job 
(depicted Figure 64). 

 

Figure 64 – Overall training process 

Based on last year and examining the types of defects that occurred over a random 480-
hour timeslot (for example last part of the timeline), it was observed that only 4 out of 7 
defect types were encountered during manual inspection phases. By utilizing the AI Smart 
Vision Suite tool – which has been trained on dataset that included all 7 defect types – 
(occurred throughout the year), the junior operator would be able to recognize all the 
defects in the same training period that would otherwise have been encountered over the 
entire year. This approach optimizes the training process not only in terms of the hours 
spent to train in recognizing defects but also in terms of completeness, as all defect types 
identified by the model would be available. 
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Figure 65 – Training process comparison 

 

From the comparison showed in Figure 65, it is evident that current training process 
needed to be divided into multiple phases throughout the year in order to observe all the 
defects identified and documented by quality procedures. With the same number of 
training hours, however, the Smart Vision Suite tool would allow all defects observed during 
the reference year to be reviewed. 

By dividing the training process into two phases, the phase managed with the Smart Vision 
Suite software enables a reduction of approximately 120 hours, as showed in Figure 66, 
presenting all observed defect types and decoupling the training from the availability of 
parts and, consequently, defects. The estimated reduction in hours was calculated based 
on the number of inspected part volumes related to production planning and the 
frequency of defects detected in the manual process. 

 

 

Figure 66 – Time reduction in Training process 

 

Further optimizations could be considered if the tool were used for final and/or periodic 
tests to verify the competencies acquired by operators. 

Additionally, the reporting capabilities allow the training phase to be decoupled from the 
availability of senior inspectors, thereby optimizing the planning of training sessions. 

However, this process remains simulated or, at most, combined with on-the-job training, 
as current Airworthiness regulations do not yet permit the introduction of AI-based tools 
for certifying an operator's competencies in the inspection domain. 
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3.b Business Scenario 3 
3.b.1 Full-scale implementation 

3.b.1.1 Architecture  
 

 

Figure 67 – Implementation of the RA within the AVIO Aero pilot 

Similarly to business cases 1 and 2, the toolkit components selected for business case 3 
(Figure 67) revealed themselves capable of effectively solving the planned tasks. In 
particular, business case 3 leverages: 

• Component 7: Decentralized data management & analytics 
• Component 9: ALIDA 
• Component 14: KeyCloak 
• Component 24: Data Container 
• Component 28: Analysis Center 

Components 7 and 28 aim at solving the predictive quality tasks through AI techniques.  
Component 9 – ALIDA – helps building and deploying pipelines which use AI models from 
components 7 and 28.  Component 14 – KeyCloak – integrates with the project’s SSO to 
provide access to ALIDA. The AVIO AERO-specific implementation of Data Container 
(Component 24), consists of three modules: S3 Mountpoint, Dataset Aggregator and 
Scheduler (Figure 68) that work together to provide access to the data source containing 
the EDM data to be processed by components 7 and 28. 
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Figure 68 – AVIO Aero-specific Implementation of Data Container 

These components (more details in the next sections) fit into the deployment architecture 
of Figure 69 below. The architecture has remained unchanged, proving functional to 
achieving its objectives. 

 

Figure 69 – Deployment architecture for AVIO Aero Business Scenario 3 

3.b.1.1.1 Analysis Center (No 28) Architecture 
Analysis Center, Number 28 of the Reference Architecture, as seen in Figure 67 is an 
analytics component developed by Atlantis Engineering SA, able to support monitoring 
and improvement of quality processes at AVIO AERO. The analytics algorithms were trained 
based on data obtained from AVIO’s EDM Machines and were integrated into the ALIDA 
Federated Framework, thus offering the end user with a complete and unified solution. A 
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Grafana dashboard was designed and set up in collaboration with the end user, used for 
verification of the models and tool validation. 

During the trials, the deployment of the core architectural components of the Analysis 
Center includes the services in Participant, Aggregator, and Presentation 
environments (see yellow-highlighted areas in deployment architecture – Figure 69) 

More precisely, the EC2 machines in the Participant environment emulate the behaviour 
of industrial assets deployed at distinct production sites – specifically, the Bielsko (PL) and 
Pomigliano (IT) plants. Each environment hosts localized analytics components that have 
been registered as ALIDA BDA applications and deployed as containerized applications. In 
alignment with Federated Learning principles, each Participant is granted access only to 
the data segments that were generated from its associated site. This data isolation 
enforces strict privacy and accessibility constraints, and at the same time increases the 
general knowledge of the final model. 

The Aggregator environment orchestrates the Federated Learning process by collecting 
model updates and metadata from the Participants. The service designed for this purpose 
is included in the analytics component and has also been registered as an ALIDA BDA 
application. During deployment, and to follow the Federated Learning principles, the 
aggregator is deployed in an isolated environment that does not have access to 
machining data but can only communicate and receive model updates from the 
Participants. 

Finally, the Presentation environment provides the interface for utilization of the final 
trained model. The primary function of this environment is to render the model outputs, 
visualize the derived insights, and communicate actionable information to end users. The 
end user is expected to evaluate the model outputs from the interface hosted in this 
environment and incorporate the tool into their routine operational workflow. 

To ensure seamless integration with the existing infrastructure, each service to be 
deployed is built into a dedicated Docker image, enabling a fully containerized 
deployment. The following services are deployed across the different environments: 

• Participant Environments: Docker images containing the analytic core services 
of Analysis Center integrated with ALIDA are deployed. Deployment is managed 
using Docker and Docker Compose, allowing the customization of environment-
specific parameters and providing an easy deployment phase. To adapt to the 
AVIO AERO Cloud infrastructure, each participant communicates with Smartshop 
infrastructure that stores all the collected data. Through this channel, data is 
transferred to the participant as Parquet files. Then, by utilizing ALIDA services, the 
data is transformed to CSV files that are afterwards given as input for 
preprocessing and analysis to the developed analytics components. 

• Aggregator Environment: A Docker image incorporating the analytics component 
for model weight aggregation is deployed. Docker Compose is again used, enabling 
users to configure various parameters related to the training process such as the 
training epochs, the output directories that store the final model parameters and 
others. 

• Presentation Environment: The presentation environment consists of multiple 
Docker containers, each supporting a specific component of the end-to-end 



D5.3. Industrial pilot area validation  
& pilot benchmark and KPIs_Process Operations 

 Horizon Europe Grant Agreement ID: 101058384 
Page 95 of 141 

 

operational workflow. One container hosts the PostgreSQL database, another runs 
a Grafana instance for data visualization and user interaction, and a third handles 
data ingestion and preprocessing. Specifically, the third container needs 
machining data from Parquet files, performs preprocessing steps, and stores the 
processed data in the PostgreSQL database. This data is then passed to a pre-
trained model for inference, with the resulting outputs also written to the same 
database. The coordinated operation of these containers enables a fully 
functional dashboard that visualizes both raw and machining data and model-
derived insights.  

 
A successful and functional deployment of the above system requires careful 
configuration of each service or container, ensuring that all parameters are properly set 
to facilitate the following: 

• Seamless and continuous communication between the Participants and the 
Aggregator during training. 

• Reliable operation of the services in the Presentation Environment, ensuring that 
the database and dashboards are continuously updated with fresh machining data 
and model outputs. 

 

3.b.1.1.2 Prediction Pipeline (Presentation Environment)  
 

Once trained, the AI models (more details in the next sections) power the anomalies 
detector and are integral part of the following pipeline (Figure 70), which allows for the 
periodic extraction of EDM data from the source as well as anomalies detection and their 
visualization. The pipeline is used by both ATL and CNR. 

 

Figure 70 – Prediction workflow used by ATL and CNR 

The flow begins with the tri component Data Container. The S3 Mountpoint docker service 
creates an access channel to the S3 bucket, which contains parquet files with the EDM 
data. S3 Mountpoint is a tool developed by AWS which, building on top of Linux FUSE 
(Filesystem in User Space), allows for mounting the buckets onto the local filesystem 
making their content available via regular directories. At that point, the Dataset 
Aggregator combines the parquet files into a CSV file, which is finally sent to the 
Anomalies Detector. The latter, processes the data, detects anomalies and stores them 
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into a database. When the Quality Managers want to visualize the results, they access 
the visualization tool, which reads the anomalies from the database and presents them 
in a dashboard. The entire just described pipeline is periodically executed by a scheduler. 
In addition to that, to allow data scientists with no access to the infrastructure to monitor 
the status of the running algorithms, a module periodically collects and sends their logs 
via email. 

 

 

3.b.1.2 AI Models  

3.b.1.2.1 Model Overview 
 
Model architecture: The core of the model is an LSTM (Long Short-Term Memory) 
Autoencoder (see Figure 71), designed for unsupervised learning tasks. The autoencoder is 
trained to reconstruct input time-series signals. In this setup, reconstruction error serves 
as the primary metric for anomaly detection—samples that the model fails to reconstruct 
accurately (i.e., with high reconstruction error) are flagged as potential anomalies.  
 
Goal: The objective is to identify anomalous behavior in machine-generated time-series 
data by learning typical signal patterns during a normal operating regime. The model 
operates in an unsupervised setting, requiring no labeled anomaly data. It relies on the 
assumption that deviations from learned normal patterns are indicative of abnormal or 
faulty machine states. 
 

 
Figure 71 – LSTM-based Autoencoder architecture 

 
Federated Learning Setup: To enhance data privacy and align with decentralized data 
ownership constraints, a federated learning framework was adopted. Training was 
distributed across five client nodes: 

• Bielsko Facility: 2 client instances 
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• Pomigliano Facility: 3 client instances. Each client trains a local model on its own 
dataset. After each local training iteration, model weights are shared (not the raw 
data) and aggregated into a global model on a central server. This setup ensures 
data remains local, maintaining compliance with data protection policies while 
still benefiting from a collaborative training process. 

 
Training Output Artifacts:  

• Serialized Model File: Contains the final aggregated LSTM Autoencoder weights, 
ready for inference deployment. 

• Global Threshold File: Stores the anomaly score threshold used for flagging 
anomalies. This is computed based on the global reconstruction error distribution, 
assuming a contamination rate of 5%, i.e., this is a standard assumption in the 
context of anomaly detection. 

 

3.b.1.2.2 Data Preprocessing 
 

Signal Selection Criteria: From the available sensor data, seven signals were selected 
for training. Selection was based on three key criteria: 

1. High Variance: Ensures that the selected signals carry meaningful dynamics. 
2. Low Missing Value Rate: Minimizes the impact of imputation bias and increases 

reliability. 
3. Low Inter-Signal Correlation: Encourages diversity, reducing redundancy across 

input features. 

Missing Data Handling: Various imputation methods were evaluated for handling NaN 
values. Forward fill (propagating the last observed value) was ultimately chosen due to its 
neutral impact on signal continuity and overall stability across experiments. 
Normalization: All input signals were normalized using standard normalization (z-score) 
to ensure uniform scaling and accelerate training convergence. 
 
Dataset Scope: 

• Machines Included: “A04858”, “A04859”, “A04668”, “A04672”, “A04673” 
• Temporal Scope: Only the first available month of data per machine was used for 

model training to emulate early-stage anomaly learning. 
• Windowing Strategy: Time-series data were segmented into fixed-size windows of 

300 samples. Multiple window sizes were tested, but 300 samples offered the best 
balance between context length and granularity. 

 

3.b.1.2.3 Experiment Setup 
 

Federated Training Process: Training was conducted using a federated learning framework, 
where each client independently trains a local LSTM Autoencoder on its windowed dataset. 
After local training epochs, model weights are communicated to a central server for 
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aggregation. The model is trained to minimize the reconstruction loss, specifically Mean 
Squared Error (MSE), with no requirement for labeled anomalies. 

Anomaly Detection Procedure 
 

Anomaly Score: Calculated as the reconstruction error of the autoencoder for each time-
step. 

Thresholding: A post-training threshold was established by analyzing the global error 
distribution and setting the cutoff at the 95th percentile, assuming a contamination rate of 
5%, in line with standard practices in unsupervised anomaly detection. 

Prediction Granularity: Anomalies are flagged at the individual timestamp level rather than 
over intervals, ensuring high temporal precision. 

3.b.1.2.4 Results & Evaluation 
Unsupervised Consistency Check: The trained model was applied to data from later 
months to assess stability. Anomaly rates in these validation periods remained close to 
the expected 5%, confirming that the model generalizes well and does not overfit to the 
training window. 

Supervised Validation (Synthetic Anomalies): To assess model performance under 
known anomalous conditions, synthetic perturbations were introduced: 

• Noise with ±3σ magnitude was added to approximately ~X% of data points in a 
subset of the selected signals. 

• The model's ability to detect these perturbations was evaluated using supervised 
metrics such as accuracy and F1-score. 

• Results indicated strong detection capability, demonstrating the model's 
robustness and reliability in practical anomaly detection scenarios. 

Figure 72 shows an example of the core outputs of the LSTM Autoencoder applied to a one-
hour time interval of a selected signal. 

Signal Details: The example focuses on the ARCKILL signal, a key parameter monitored 
during machine operation. The raw signal is plotted over a continuous one-hour window, 
providing a clear view of its dynamics. 

Overlayed Reconstructions: Alongside the original ARCKILL signal, the corresponding 
reconstructed signal, named ARCKILL_recon, is superimposed. The LSTM Autoencoder 
generates this reconstructed output and represents the model’s best attempt to replicate 
the original time-series based on patterns it has learned during training. The visual 
comparison between the original and reconstructed signal helps highlight any significant 
deviations, which are potential indicators of anomalous behavior. 

Anomaly Score Plot: Beneath the signal plots, the anomaly score is charted across the 
same time axis. The anomaly score is computed as the reconstruction error—typically the 
Mean Squared Error (MSE) between the input and output vectors for each step. Elevated 
anomaly scores suggest a poor reconstruction by the model, and therefore a higher 
likelihood of anomalous behavior at that timestamp. 
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Binary Anomaly Label: To enhance interpretability, a binary anomaly label is also 
included in the plot. This label takes a value of 1 when the anomaly score exceeds a 
predefined global threshold (calculated during the model evaluation phase based on an 
assumed contamination rate), and zero otherwise. The label provides a straightforward, 
threshold-based classification of time points as anomalous or normal, supporting 
downstream analysis or alerting mechanisms. 

The second visualization is provided to complement the anomaly detection output. This 
graph spans the same one-hour interval and reports a smoothed average of the signal or 
anomaly score, computed over a sliding window or rolling mean. 

The purpose of this graph is to: 

• Offer a noise-reduced view of signal behavior, which can help identify gradual 
trends or subtle shifts not immediately obvious in raw signal data. 

• Enhance the visual clarity of underlying patterns and improve the analyst’s ability 
to correlate anomalies with contextual changes in the signal. 

 

 

Figure 72 – Anomaly detection output example in two separate visualisations. On the left, the signal 
is deemed as anomalous and, on the right, the specific anomalous pattern is accompanied by a 

numerical indication of the anomaly score 

3.b.1.2.5 AI Models results of Analysis Center 
Model 

The core component of the Analysis Center is a fully connected Autoencoder, designed 
specifically for this use case. Given the unavailability of labelled data, an unsupervised 
modelling approach was adopted. The Autoencoder consists of two primary components: 
an encoder and a decoder. The encoder compresses the input time series data into a 
lower-dimensional latent representation, capturing the essential patterns of normal 
operational behaviour of the EDM machines. The decoder subsequently reconstructs the 
input data from this latent representation. This architecture allows the model to learn a 
compact and representative encoding of healthy operational states, serving as the basis 
for anomaly detection. 

Preprocessing 

The data preprocessing pipeline was specifically designed to accommodate the 
characteristics of the EDM datasets provided. The datasets originated from two sites and 
encompassed a total of five machines, each exhibiting distinct operational behaviours. 
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These differences necessitated tailored preprocessing procedures to ensure consistent 
representation across machines. 

Initial preprocessing included standard data cleaning techniques, such as the removal of 
noise and handling of missing values. Afterwards, the data were synchronized in order to 
obtain a unified dataset with the same intervals between all available timeseries. However, 
the most critical step involved organizing the data into meaningful time windows that 
preserved the intrinsic operational structure. After detailed examination, the data were 
segmented into smaller units referred to as sequences. Each sequence represents a 
small-time window during which the machine operates on a specific piece of equipment. 

For each sequence, statistical features—including mean, standard deviation, and lagged 
values—were extracted from non-static features to capture the temporal and operational 
characteristics of the machine. These sequences, along with their derived features, were 
then used as input to the Autoencoder for anomaly detection, where each sequence could 
be classified as either healthy or anomalous. 

The utilized features were primarily related to electric spark behaviour, as well as 
operational and contextual metrics. The complete set of features used as input to the 
model is in Table 9: 

Table 9 – Complete set of features used as input to the model 

Feature Description 

PARTNUM Part number 

TOOLNUM Tool number 

EFFICIENCY Average efficiency of the current setting (%) 

ARCVOLTAGE Bad sparks due to arc voltage by IPG generator (%) 

DELAY Bad sparks due to delay by IPG generator (%) 

SEQUENCETIME Sequence time 

GOOD Good sparks by IPG generator (%) 

MACHININGTIME Machining time 

ARCKILL Actions taken on bad sparks killed by IPG generator (%) 

SHORTCIRCUIT Percentage of short-circuit sparks 

MACHININGSPEED Machining speed 

SEQUENCE Sequence number 

ESTOP Emergency stop 

PARTJOBNAME Job name 

EXECUTION Execution coding (e.g. ‘Active’, ‘Stopped’, ‘Interrupted’, etc.) 

 

Training & Testing 

During training, the Autoencoder is exposed exclusively to time series slices 
corresponding to normal machine operation. The model learns to recreate these healthy 
slices with minimal reconstruction error, effectively capturing the intrinsic dynamics and 
correlations present in the data. Optimization is performed to minimize the reconstruction 
loss, which serves as a measure of the difference between the original input and its 
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reconstructed output. By focusing solely on healthy data, the model inherently becomes 
sensitive to deviations from normal behaviour, without requiring labelled examples of 
faults or anomalies. The split used during training was 70/15/15 for train/validation/test set 
accordingly. 

For evaluation, new time series slices are fed into the trained Autoencoder. When the input 
corresponds to healthy operation, the model is expected to reproduce the data with low 
reconstruction error. Conversely, when a slice exhibits abnormal or faulty behavior, the 
reconstruction error increases significantly due to the model’s lack of prior exposure to 
such patterns. To determine whether a slice is anomalous, a threshold was defined based 
on the reconstruction error as follows: 

 

Figure 73 – Reconstruction error formula 

 

This formulation introduces a tolerance factor into the anomaly detection process, 
allowing the method to account for natural variations in normal operational data. Slices 
exceeding this threshold are classified as anomalous, whereas those below the threshold 
are considered healthy. 

Evaluation & Observations 

Due to the absence of labelled data, the evaluation of the Autoencoder was conducted 
using manually generated anomalies. These synthetic anomalies were created by 
systematically increasing the values of features indicative of faulty operation, such as 
ARCKILL, ARCVOLTAGE, and SHORTCIRCUIT, while simultaneously decreasing the values 
of features representing normal operation, including GOOD and EFFICIENCY. This 
approach allowed for controlled testing of the model’s sensitivity to abnormal behaviour. 
Additionally, we observed that model performance improved when training was restricted 
to machines with similar operational characteristics. In particular, one machine from a 
specific site (Pomigliano site, machine A04668) exhibited operational patterns that were 
substantially different from the other machines, and including its data during training 
reduced the model’s ability to generalize. In future work, the model should also be 
evaluated against anomalies that have been manually labelled or recognized by 
operators to ensure alignment with real-world fault detection. 

3.b.1.3 Applications  
The Analysis Center can be conceptualized as an application composed of two primary 
components: the model-related module and the user interface. 

The model-related module is responsible for processing EDM data and producing anomaly 
predictions. It accepts input in the form of CSV files, which are passed through a custom 
preprocessing pipeline before being fed into the trained Autoencoder. The module outputs 
a classification for each sequence, labelling it as either healthy or anomalous. All 
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inference results are stored in a database, allowing subsequent access by users or 
visualization tools. Additionally, the module incorporates a comprehensive logging 
system, which records all processing steps, facilitating transparency and traceability. 

The user interface provides a means for users to monitor the AI system and interpret its 
results through interactive tools, including: 

• Interactive Dashboard: Grafana dashboards were developed to visually 
represent model outputs. As illustrated in Figure 74 and Figure 75, the dashboard 
includes both a table and a graphical panel. The table provides the following 
information for each evaluated sequence: 

• Machine: A unique identifier for the machine corresponding to the inference. 
• Inference: The anomaly score assigned to the sequence. The column is color-

coded to indicate severity: low scores in green, medium scores in yellow, and high 
scores in red. 

• Sequence Start: Timestamp marking the beginning of the data sequence. 
• Sequence End: Timestamp marking the end of the data sequence. 
• Sequence: A hyperlink enabling the user to isolate and examine the data for a 

specific sequence, facilitating focused analysis of individual cases (Figure 75). 

 

Figure 74 – Interactive dashboard for analytics visualization 
 

 

Figure 75 – Interactive dashboard for a specific sequence 
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Logging System 
 Each component of the Analysis Center logs its operations to provide transparency and 
ensure robust monitoring. Logs include details on input files being processed, the 
anomaly scores computed for each sequence, and confirmation of completed 
processing, indicating readiness for subsequent files. The logging system also captures 
errors, such as unsupported file formats, thereby supporting efficient troubleshooting 
and operational reliability. 

 

Figure 76 – Presentation environment logging mechanism 

 

3.b.1.4 Key challenges and solutions for full-scale implementation  

3.b.1.4.1 Challenges of Analysis Center 
Although the developed component is fully functional, an additional effort has been made 
to address a couple of challenges in order to improve the scalability of the 
implementation: 

• Participants: In a full-scale deployment, participants should be hosted on the 
edge – directly on or near the machinery equipment – rather than in cloud-based 
environments. This edge deployment would eliminate unnecessary data transfer 
over external networks by enabling local processing, thus reducing latency and 
potential security risks. Additionally, it is essential to ensure that each edge device 
has sufficient computational and memory resources to handle the potentially 
intensive workload required by federated learning tasks, which may vary 
depending on the final goal and model complexity. 

• Aggregator: As the number of participants increases, the aggregator must 
communicate efficiently with all edge nodes to ensure timely model updates. While 
secure channels are already in place from the utilized federated learning 
framework (Flower framework uses gRPC channels), maintaining high-speed 
communication becomes a key scalability challenge. To address this, the system 
should minimize synchronization delays by optimizing data transfer protocols, 
reducing payload sizes, and possibly employing parallel or asynchronous 
aggregation strategies. 

 
In addition to participant and aggregator-oriented improvements, a full-scale 
implementation would require continuous monitoring of edge participants. This includes 
detecting performance bottlenecks, identifying node failures, and addressing connectivity 
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issues. Robust observability mechanisms should be implemented, including real-time 
health checks, resource usage tracking, and automated alerting. 

Beyond monitoring, the system should also include fault-tolerant mechanisms to handle 
edge node failures smoothly and without disrupting the overall federated learning 
process. This could involve strategies such as temporarily excluding unresponsive nodes, 
rescheduling training rounds, or using asynchronous updates to maintain network 
stability and model convergence. 

3.b.2 Industrial trials of the pilot  

3.b.2.1 Testing procedure and Barriers  
The main barrier encountered while deploying and testing the tools on the Avio Aero IT 
infrastructure was basically the same of previous pilots: the need to be compliant with the 
strict cyber security regulations. Access to the virtual machines and data storage could 
only occur from within the Avio Aero network and with Avio Aero-compliant computers. From 
the laptop with personal SSO credentials was possible to access the Avio Aero network 
through a VPN and to the specific virtual machines through CyberArk.    

3.b.3 Final KPIs monitoring and validation 

3.b.3.1 Industrial Outcomes and Lessons Learned  
The Industrial Pilot implementation for Business Scenario 3, assumes different business 
key factors: 

• Cost Reduction: Predictive quality minimizes costs associated with 
defects, rework, and warranty claims by identifying issues early in the 
process. 

• Efficiency Gains: Optimizing production processes and resource 
allocation through predictive insights leads to improved operational 
efficiency. 

• Risk Mitigation: Early detection of quality issues reduces risks related to 
product recalls, compliance violations, and customer dissatisfaction. 

• Competitive Advantage: Implementing predictive quality enhances 
product reliability and consistency, differentiating the business in the 
market. 

• Customer Satisfaction: Delivering high-quality products consistently 
builds customer trust and loyalty, driving repeat business and positive 
brand reputation. 

• Data Utilization: Leveraging advanced analytics and machine learning to 
extract actionable insights from production and quality data maximizes the 
value of existing data assets. 

• Scalability: Predictive quality systems can be scaled across multiple 
production lines or facilities, ensuring consistent quality standards 
globally. 
 

Based on models results, an outcome was the low variety of signals in dataset exposed by 
the equipment which is translated in a not exhaustive description of the overall process. 
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The upgrade of software version embedded on the equipment would enrich the signals, 
but this implies the certification of the entire process with extra costs and long times for 
the business.  

In addition, despite that EDM process between equipment is provided on the same product, 
it could be related to different operations in production cycle based on Part Number: this 
could be a limitation in terms of predicted parameters process configuration around all 
equipment. This limitation is strictly related to the production management in Avio Aero, 
having a logic model of production line: an equipment works different Part Numbers, and 
the production cycle can consider the same equipment for different cycle operations 
depending by the Part Number. The lesson learnt is that to maximize the effectiveness of 
federated prediction models, equipment that provide same operations across the sites 
must be considered. 

An additional outcome is the unavailability of direct timestamp correlation between 
process deviations coming from equipment signals and product quality during inspection 
processes, that happen later in production cycle. This is translated in missing connection 
between predicted quality feedback coming from models and quality losses contribution 
in Overall Effectiveness Equipment calculation. This not depending by the pilot 
implementation, but it is strictly connected to the overall process that does not include 
the quality inspection at the same time of the EDM operation. If in the next future a 
traceability correlation will be introduced across different operations, so between signals 
from equipment and quality inspection in this case, the quality contribution can be 
counted in the OEE and productivity of the equipment. 

 

 

3.b.3.2 KPI Measurement and Performance Evaluation  
The key performance indicator for Pilot 3 is reported in Table 10.   

Table 10 – Pilot 3 KPIs 

ID  
BUSINESS 

Indicators  
DESCRIPTION  Unit*  

Initial 

value  
M18 

Value 
Expected 

value  

Expected date 

of 

achievement*

*  

1  
Efficiency of 

OEE on EDM 

machines.  

Data collection 

could implement 

both Predictive 

Quality and 

Predictive 

Maintenance by 

intervening on 2 

of the 3 indices 

that calculates 

OEE  

OEE  75%  TBA +1%  

Before 24 

months after 

the 

implementati

on  
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The Performance evaluation has been addressed through the OEE calculation based on 
data collected on last year. Additionally, to the signals managed by the AI models 
developed and implemented for this Pilot, the signal on the machine status (exec) has been 
collected. The value assumed by the signal is than classified as uptime or downtime in OEE 
calculation. More details are listed in Table 11: 

Table 11 – Signal details 

Signal Description Unity 

exec State of Machine 
READY, ACTIVE, 
INTERRUPTED, 
STOPPED 

 

OEE is expressed as a percentage and is calculated by combining three factors: 

• Availability: The percentage of scheduled time that the equipment is available 
to operate. 

• Performance: The speed at which the equipment operates compared to its 
designed speed. 

• Quality: The percentage of good parts produced compared to the total parts 
produced. 

 

The OEE calculation splits the contribution loss depending by the classification of different 
values of signals. The OEE formula is: 

OEE = Availability x Performance x Quality 

Where: 

Availability = Operating Time / Scheduled Time 
Performance = (Ideal Cycle Time x Total Parts) / Operating Time 
Quality = Good Parts / Total Parts 

Table 12 lists the classification adopted for Machine Status signal: 

Table 12 – Machine Status Signal 

Uptime 
Downtime 
(Availability/Performance) 

ACTIVE 
READY, INTERRUPTED, 
STOPPED 

 

An additional signal related to Cycle Time is used for Performances losses calculation. 
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As shown in Table 12, the downtimes for EDM equipment include only Availability and 
Performances losses, assuming there are no quality losses. This is a strong assumption 
due the restricted availability of data and for the missing direct correlation between status 
signal and quality inspection (as after operation in the production cycle). 

3.b.3.3 Final KPI Assessment and Business Impact  
Compared to the OEE values calculated at the beginning of the project, focusing the 
performance analysis on the last year, the initial OEE values for each equipment (both for 
the Pomigliano and Bielsko facilities) are significantly lower. This was due to a decrease in 
production volumes, resulting in reduced utilization in terms of the capacity of the 
selected machines. Therefore, the OEE percentage increase is assessed based on this 
assumption.  

Table 13 depicts the performance analysed for the KPI of pilot 3. 

Table 13 – Pilot 3 Final KPIs 

ID  
BUSINESS 

Indicators  
DESCRIPTION  Unit*  

Initial 

value  
Expected 

value  

Expected date 

of 

achievement*

*  

Current KPI 

Assessment 

1  
Efficiency of 

OEE on EDM 

machines.  

Data collection 

could implement 

both Predictive 

Quality and 

Predictive 

Maintenance by 

intervening on 2 

of the 3 indices 

that calculates 

OEE  

OEE  

75% 

(14%-

45% in 

2025) 

+1%  

Before 24 

months after 

the 

implementati

on  
  

11%-73% 

(+1÷20%) 

 

The OEE measured at the beginning was higher than the value in 2025, depending by the 
contribution in Availability and Performances losses. The current value is lower: 14%-45% 
in 2025, depending by the equipment). The expected OEE value has been evaluated in 
terms of absolute increase, as already defined in Table 13. 

The process engineer analysed the feedback provided by the algorithms using the 
dashboards developed by Atlantis and CNR showed in Figure 77, validating the AI models 
while simultaneously acting on the process when the deviation was confirmed. 
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Figure 77 – UI Dashboard: Process Monitoring 

 

Figure 78 – UI Dashboard: Anomaly Detection 

When an anomaly is notified and confirmed by the operator (see Figure 78), the process 
engineer promptly modifies the process parameters whenever possible, avoiding 
downtime or (in a still very preliminary phase) a potential impact on the quality of the 
processing and, consequently, the final product. 

By analysing the OEE trend and focusing on the last month (when the tool has been tested 
by process engineers), it can be observed that the trend is increasing, with an improvement 
that significantly exceeds 1%, for some equipment. 

Below (Figure 79 to Figure 82) are shown the OEE trends and the individual contributions of 
losses for two different equipment, in Pomigliano and Bielsko respectively. 
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Figure 79 – Equipment A04858 (Pomigliano) - Losses trends 

 

Figure 80 – Equipment A04858 (Pomigliano) – OEE trend 

 

 

Figure 81 – Equipment A04673 (Bielsko-Biala) - Losses trends 
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Figure 82 – Equipment A04673 (Bielsko-Biala) – OEE trend 

As previously mentioned, the increase in OEE is not directly imputable to an impact on 
quality, as it has been assumed that quality is always ensured without contributions from 
quality losses. Process optimizations and production increases have impacted on the 
contributions of Availability and Performance. The management of AI model feedback on 
the process may have contributed to reducing and optimizing losses, thereby impacting 
the increase in OEE value. 

The company's current objective is to work on the traceability of the parts processed within 
the production cycle in order to properly manage the contribution of quality losses in the 
OEE calculation, achieving a value that is more realistic and closer to the actual process. 
In this way, the AI models used, in addition to impacting Availability and Performance 
losses for the reasons described above, will have a direct impact on optimizing the 
contribution of Quality losses, improving both the efficiency of the plant and the quality of 
the process itself. 
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4 Performance Monitoring Framework 

4.1 Introduction of methodology (6P-
Performance Pillar) 

The 6Ps Migration Model functions as a strategic framework designed to support 
organization particularly those in the manufacturing sector in assessing both their current 
level of digitalization and their target maturity across six key dimensions. Additionally, it 
offers a structured means to monitor progress along a digital transformation roadmap5. 

When an organization becomes aware of its digitalization gaps, two main scenarios may 
arise: 

• In the first, the organization is already involved in a project that targets specific 
aspects of its digital strategy. In such cases, the implementation roadmap is often 
shaped by the project’s scope, and the 6Ps model provides a mechanism to 
evaluate the progress and impact of the ongoing initiatives.  

• In the second scenario, the organization has recognized the gaps but has yet to 
address them. Here, the model helps by identifying areas for potential 
improvement, thus guiding strategic planning. 

To fulfill its purpose, the model performs a comprehensive analysis of six core pillars that 
reflect essential components of the production environment. It is built on the 
understanding that successful digital transformation must go beyond technical 
capabilities and include what are referred to as “socio-business” dimensions. The six 
pillars—Product, Process, Platform, People, Partnership, and Performance—are grouped 
into three technical and three socio-business categories, offering a balanced and 
integrated perspective for evaluating digital transformation efforts, as Figure 83. 

 

Figure 83 – The 6Ps Model 

 
5 https://re.public.polimi.it/retrieve/handle/11311/1206091/715004/1-s2.0-
S2212827122001068-main.pdf  

https://re.public.polimi.it/retrieve/handle/11311/1206091/715004/1-s2.0-S2212827122001068-main.pdf
https://re.public.polimi.it/retrieve/handle/11311/1206091/715004/1-s2.0-S2212827122001068-main.pdf
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Within the scope of this work package, particularly Task 5.4, titled “Pilot Area KPI Collection 
and Benchmarking Data”, the focus is placed on the Performance dimension of the 6Ps 
model. This pillar plays a critical role in examining how indicators within manufacturing 
environments are defined, measured, and monitored. Importantly, the emphasis of this 
dimension is not on whether indicator values themselves have improved, but rather on the 
extent to which measurement practices have become more precise and reliable. The 
Performance dimension is structured into six interrelated areas: Operational/Technical, 
Economic, Environmental, Social, Product-Service Lifecycle, and Supply Chain. Together, 
these areas offer a comprehensive lens through which performance-related digital 
capabilities can be assessed. To determine a company’s level of digital maturity, 
responses to the assessment are mapped onto a structured five-level maturity scale, 
enabling a standardized and comparative evaluation across different pilot sites. 

• Initial: in this stage, the dimension is poorly digitized or not digitalized at all. 
Processes are poorly controlled, if at all, and managed reactively. 

• Managed: at this level, some aspects of the organization are digitalized and 
controlled, such as through a pilot or an ongoing digitization project. Processes are 
partially controlled and managed based on experience. 

• Defined: in this stage, digitalized activities are defined and implemented 
throughout the organization. Processes are planned and adhere to good practices 
and management procedures. 

• Integrated: processes are fully planned and implemented, with a focus on 
information exchange, integration, and interoperability across applications. Best 
practices and common standards are present. 

• Exploited: at this highest level, the organization fully exploits the dimensions. 
Processes are digitally oriented and built upon a robust technology infrastructure. 
The organization demonstrates high potential for growth and supports decision-
making effectively. 
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Figure 84 – 6Ps Model – Performance dimension 

Given that the 6Ps method serves as a comprehensive monitoring framework, its structured 
maturity levels enable a standardized and replicable assessment across multiple pilot 
sites. This is particularly valuable for supporting the generalization of impact KPIs beyond 
isolated factory-level insights. The Performance dimension, in particular, provides a robust 
basis for evaluation, as it encompasses a wide range of critical areas (shown in Figure 84). 
This comprehensive scope aligns well with the objectives of the task 5.4, which aims to 
facilitate a generalized and integrated impact assessment across the entire life cycle of 
the value network. 

Moreover, the flexibility of the 6Ps model makes it especially suitable for incorporating 
technical elements within the analysis. By integrating components such as Process 
Planning and Preparation, Data Sharing and Integration, Federated Learning and 
AI Models, and Progress in Integration, the model is also aligned with the technical 
goals of the work package. This integration not only enhances visibility and measurement 
but also strengthens the framework's capacity to monitor production performance and 
effectively generalize impact KPIs across diverse contexts. 

In this regard, the newly analyzed aspects have been formulated and structured as it 
follows: 

• Pilot business processes: The primary objective of this section was to evaluate 
the current status and effectiveness of process planning and preparation 
activities within the pilot implementations. By asking respondents to rate progress, 
identify achieved milestones, and outline encountered challenges. 
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• Data Sharing and Integration: The questions aimed to capture the level of 
technical progress in connecting and synchronizing data sources, identify specific 
barriers and limitations encountered during implementation, and evaluate the 
perceived effectiveness of the Data Container in supporting data exchange and 
digital service enablement. Additionally, the survey sought to collect evidence of 
tangible benefits derived from its use, such as improved transparency, Cost 
savings from streamlined data processes, and data-driven decision-making 
capabilities. 

• AI Models and Federated Learning: This section aimed to measure the perceived 
advancement in adoption, assess how effectively Federated Learning has 
contributed to enhancing AI model performance, and identify tangible benefits 
such as improved model accuracy, enhanced data privacy, and reduced data 
transfer costs. It also sought to uncover key barriers to adoption, including 
technical, organizational, and integration-related challenges, and gather 
additional qualitative insights through open-ended feedback. 

• Progress in Integration: This section aimed to capture both the quantitative 
status of integration efforts and the specific achievements realized, such as data 
synchronization, digital twin development, and predictive maintenance 
implementation. It also sought to identify common barriers and operational 
challenges that may hinder progress, including technical, organizational, or 
resource-related issues. Finally, the open-ended question was included to collect 
any additional qualitative feedback from pilot teams. 

The methodology is structured around five key steps; each aligned with the principles of 
the 6Ps framework and tailored to the specific activities of each pilot and the objectives of 
Task 5.4: 

1. Design and preparation of the survey, guided by the 6Ps methodology and adapted 
to reflect the context and operational realities of each pilot site. 

2. Identification of the AS-IS profile, representing the initial digital and organizational 
maturity of the manufacturing enterprise through structured survey. (beginning of 
the project) 

3. Identification of the TO-BE profile, outlining the targeted or expected future state 
of the enterprise in terms of digital transformation.  

4. Identification of actions to bridge the identified gaps, which may include 
collaboration with project partners and the continuous monitoring of pilot-specific 
activities throughout the project timeline. 

5. Assessment of improvement progress, conducted through structured interviews 
with pilot leaders to evaluate the current level of advancement. (last months of the 
project) 

It is important to note that this methodology does not aim to directly evaluate KPIs; rather, 
it focuses on assessing the overall production performance of the company in the context 
of its digital transformation journey. 
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4.2  Analysis of the Performance Pillar (AS-
IS) – Survey 

This section presents an analysis of the first iteration of survey responses (Annex 1), The 
primary objective of this survey is to capture the initial state (As-Is) of digital and 
organizational maturity within the manufacturing enterprise, while also identifying their 
future expectations (expected To-Be) and targeted development goals.  

Following sections represent collected responses from the two main pilots under WP5 Avio 
and GF. For the remaining two pilots, AVL and VW, relevant information can be found in 
Deliverable D4.3. 

As outlined earlier, the analysis is divided into two main components. The first focuses on 
the six core aspects of the Performance dimension, offering an interpretation of responses 
related to each area. The second addresses the additional questions that were 
specifically developed to align with the project and work package requirements, along with 
their corresponding analysis and interpretation. 

4.2.1 Integrated Machine Tool Performance Self 
Optimisation Pilot (GF)-AS-IS 

As depicted by Table 14, the partner had been provided “N/A” for four of the six categories: 
Operational-Technical, Economic, Environmental, and Social, leaving both AS-IS and TO-
BE levels marked as Not Available. This indicates that, at the initial stage, these areas 
either have not been evaluated internally or are not yet in scope for structured 
measurement within the organization.  

For the Product-Service Lifecycle, the partner reported a current maturity level of 
"Integrated", meaning that they already include Life Cycle Costing (LCC) and Environmental 
Life Cycle Assessment (LCA) in their analysis, aligning with circular economy principles. 
Looking ahead, their goal is to reach the "Exploited" level, which involves extending the 
assessment further to include Social LCA, contributing to broader sustainability and Green 
Deal objectives. 

In terms of Supply Chain performance, the partner is currently at the "Integrated" level and 
intends to maintain this position moving forward. This reflects an established capability in 
measuring physical, economic, and sustainability-related KPIs, suggesting that the 
company already has a comprehensive approach in place for evaluating supply chain 
activities. The absence of change in the TO-BE status may indicate that current practices 
are seen as adequate or already aligned with strategic goals. 

Table 14 – Summary of results of 1st Iteration GF 

 Performance Dimension AS-IS TO-BE 

Operational - Technical N/A N/A 

Economic N/A N/A 

Environmental N/A N/A 
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Social N/A N/A 

Product-Service Lifecycle Integrated Exploited  

Supply Chain Integrated Integrated 

 

Pilot business processes: The partner rated the progress in achieving objectives for 
process planning and preparation as "Good", and additionally, among the key milestones 
achieved, the partner highlighted the integration of Toolexpert into the CAD/CAM 
environment and the implementation of a Virtual Environment, marking important steps 
toward digitalizing and optimizing process planning workflows. However, a significant 
challenge encountered was the full implementation of data exchange across all partners, 
which remains difficult due to the complexity and variability of the environments involved.  

Data Sharing and Integration: The partner rated the progress in connecting data 
sources and synchronizing data at the pilot site as "Good progress", reflecting a positive 
progress in the implementation of data integration activities. A challenge noted in this 
process was the presence of issues with data synchronization, indicating that while 
connectivity is being established, maintaining consistent and aligned data flows remains 
an area for improvement. Despite this, the partner evaluated the Data Container as “Very 
effective” in enabling data exchange and service implementation. A key benefit identified 
was the ability to implement new digital services, demonstrating how the Data Container is 
supporting the partner’s broader digital transformation objectives. 

AI Models and Federated Learning: The partner reported "Good progress" in leveraging 
Federated Learning at the pilot site, indicating that the initial implementation is moving 
forward as planned. However, they rated the effectiveness of Federated Learning in 
enhancing AI models as "Somewhat effective”. Additionally, a key benefit identified was 
enhanced data privacy, reflecting the strength of Federated Learning in enabling 
distributed AI without centralizing sensitive information. However, the partner also noted a 
key challenge in the integration of Federated Learning with existing systems, which may 
require additional alignment of infrastructure and processes. 

Progress in Integration: The partner rated the progress in integrating the RE4DY 
components and achieving the planned objectives at the pilot site as "Good", indicating 
steady progress in aligning system components and digital tools with project goals. 
Among the key achievements, the partner reported the successful connection of data 
sources to the Data Container and the completion of significant data synchronization 
tasks, both of which are essential steps toward enabling seamless data flow and 
interoperability across systems. However, the partner also identified technical difficulties 
with data integration as a major challenge, suggesting that despite progress, further work 
is needed to ensure reliable and efficient integration of components within the existing 
infrastructure. 

4.2.2 Multi-Plant Predictive ZDM Turbine Production Pilot 
(AVIO)-AS-IS 

Responses on performance’s aspects, reported in Table 15 and Figure 85 , revealed a clear 
understanding of diagnostic practices in several areas, while also highlighting the 
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ambition to advance toward predictive and prescriptive capabilities supported by digital 
tools and AI. In terms of Operational and Technical performance, the company currently 
operates at a Defined level, meaning KPIs are well-structured, and efforts are made to 
understand the causes of performance trends. However, the expected target is to reach 
the Exploited stage, where AI/ML models and optimization tools enable simulation-based 
decision-making. Similarly, for Economic performance, the enterprise seeks to evolve from 
its current Defined stage, focused on causal analysis to an integrated level, where 
predictive models and financial forecasts guide proactive strategies. The Environmental 
and Product-Service Lifecycle dimensions are currently positioned at a Managed level, 
with efforts directed toward increasing structure and diagnostic capability (Defined).  
Regarding Social performance, the company reports a stable Defined level both in the 
current and future state, suggesting that existing methods for monitoring welfare and 
social indicators are satisfactory. Finally, Supply Chain performance is also currently at a 
Defined level, where both physical and economic indicators are measured. The desired 
shift to the Integrated stage reflects an intention to incorporate sustainability metrics into 
the evaluation framework, enabling a broader and more responsible performance 
assessment.  

 

 

Table 15 – Summary of results of 1st Iteration Avio 

 Performance Dimension AS-IS TO-BE 

Operational - Technical Defined  Exploited 

Economic Defined  Integrated 

Environmental Managed Defined  

Social Defined  Defined  

Product-Service Lifecycle Managed Defined  

Supply Chain Defined  Integrated 
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Figure 85 – Radar chart – Performance Avio 

Pilot business processes: The partner rated the current status as “Good”, indicating a 
solid progress in aligning operational activities with the expected project outcomes. 

In terms of key milestones achieved, the partner reported several notable 
accomplishments. These include the establishment of a shared set of business 
requirements, the development and execution of trial solutions leveraging the Testing and 
Experimentation Facility (TEF), and the definition of the architectural design for the 
intended solution. Additionally, an important operational step, an on-premises data 
acquisition campaign was successfully completed, providing the foundational data 
required for further implementation and integration efforts. Despite these advancements, 
the partner also highlighted a number of challenges and bottlenecks encountered during 
implementation. Two main issues were noted: first, the cybersecurity requirements 
associated with deploying the solution in an on-premise environment, particularly in the 
context of scaling up; and second, the difficulty of fitting the reference architecture into a 
real industrial setting while ensuring full compliance with industry-grade standards. These 
challenges underscore the complexity of translating architectural frameworks into 
practical, secure, and scalable industrial applications. 

Data Sharing and Integration: The partner rated the progress in connecting data 
sources and synchronizing data at the pilot site as "Good progress". However, the main 
challenge encountered during the data sharing and integration process was identified as 
difficulty connecting data sources. This indicates that while the overall progress is 
positive, technical barriers still need to be addressed to achieve seamless connectivity 
across all systems. Regarding the effectiveness of the Data Container in enabling data 
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exchange and service implementation, initially the partner indicated it was "Not very 
effective" while in the next phases, the Avio Aero-specific implementation of Data 
Container enabled interoperability between the two data formats at data source (edge) 
that required by the analytics components. However, a key benefit observed from using 
the Data Container was improved data visibility and transparency. 

AI Models and Federated Learning: The partner rated the progress in leveraging 
Federated Learning at the pilot site as “Good progress”. However, they assessed its 
effectiveness in enhancing AI models as “Neutral”, suggesting that tangible improvements 
in model performance have yet to be realized. Consistent with this, the partner reported 
“No significant benefits observed” so far from implementing Federated Learning. 
Interestingly, despite the limited perceived impact, the partner indicated “No challenges 
faced”. It was further noted that any technical aspects or limitations should be addressed 
in coordination with the partners directly involved in the development of the AI models.  

Progress in Integration: The partner rated the progress in integrating the RE4DY 
components and achieving the planned objectives at the pilot site as "Good". However, 
none of the listed key achievements, including data container connection, predictive 
maintenance implementation, digital twin development, or data synchronization have been 
fully reached at the current stage. Instead, the partner clarified that the team is currently 
working on deploying all these solutions into the production environment, indicating that 
implementation is still in progress. The main challenge encountered during integration has 
been related to technical difficulties with data integration. Additionally, the partner noted 
that the challenges reported in this section are consistent with those mentioned earlier in 
pilot business process section. 

4.3 Analysis of the Performance Pillar (TO-
BE) – Interview 

As part of the final evaluation phase, a follow-up interview was conducted with the pilot 
representative to assess the latest progress in performance dimension, and to reflect on 
the achievements and challenges reported in the initial survey. Below are the responses 
obtained during the interview, which will be presented and analyzed on a section-by-
section basis. 

In addition, a structured interview was conducted to assess progress on KPIs (see Annex 
2) beyond the factory-level pilot. The questions focused on performance trends, 
operational changes, data quality, operator feedback, challenges & mitigations, and future 
priorities, in line with the objective of generalizing impact insights at the pilot area level. 
This qualitative approach complements the quantitative KPI data collected during the 
project and supports broader communication and replication goals across the RE4DY 
value network.  The interview content directly aligns with the expectations outlined in the 
task description, which emphasizes monitoring and evaluating transformed and blended 
data outputs, and extracting generalizable insights. By focusing on performance evolution 
since M24, data reliability, operational feedback, and lessons learned, the interview offers 
a comprehensive view of the pilot’s operational performance. 
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4.3.1 Integrated Machine Tool Performance Self- 
Optimization Pilot (GF) – TO-BE 

 

Pilot business processes 

• Progress Update on Process Planning and Implementation 

The partner confirmed that the progress remains at a “Good” level, as previously reported. 
They emphasized that a complete set of application developments has been 
implemented, each corresponding to the four business processes defined in the project 
deliverables. Despite experiencing some delays in implementing the last set of business 
processes, the partner confirmed that these components are now ready and in place. Key 
milestones achieved include the successful development and deployment of applications 
covering process planning, preparation, and monitoring, specifically those leveraging AI. 
The current focus, as the project enters its final phase, is on testing all integrated 
components and preparing for the final update of KPIs, in alignment with the original 
objectives outlined in the trial handbook. 

Data Sharing and Integration 

• Data Container Implementation: Progress, Challenges, and Future Directions 

In the interview, the partner reaffirmed their earlier assessment of "Good progress" in data 
integration, particularly in connecting and synchronizing data with the Data Container. 
When asked about the main technical and organizational challenges, the partner 
emphasized the complexity of collecting data from a diverse range of sources, including 
machines, tools, PLM systems, and software applications. Despite these challenges, they 
successfully consolidated this data, enabling enhanced collaboration among pilot 
participants such as Siemens, Innovalia, Metrology, Unimetric, GF, ATLANTIS, and others. 
Regarding the “data as a product” concept and its relevance for data sharing in a 
marketplace, the partner acknowledged the potential for sharing structured data 
externally, but noted that this would require well-defined agreements among 
stakeholders. Internally, agreements are already in place, making the concept feasible. 
However, broader external sharing through a data marketplace (such as the one proposed 
by ATOS) would need further discussion and clarification on legal and commercial 
frameworks.  The partner described their experience with the Data Container as very 
effective, highlighting its critical role in enabling data synchronization and digital service 
implementation. They noted that without the container, these services could not have 
been deployed. The unified API and access control features were considered highly 
convenient, though the most critical and challenging aspect remained the 
synchronization and structuring of data from different systems. They recommended that 
future improvements could focus on standardizing data synchronization and structure, 
which they linked to concepts like Digital Product Passports. Enhancements in this area 
would help scale the Data Container’s use across pilots and other industrial contexts. 

AI Models and Federated Learning 

• Federated Learning Deployment: Progress, Integration, and Predictive Use Case 
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During the interview, the partner provided additional insight into the implementation and 
effectiveness of Federated Learning in their pilot. They confirmed their previous evaluation 
of "Good progress", and noted that enhanced data privacy was a key benefit. However, they 
also reiterated that integration with existing systems posed a notable challenge. The 
partner explained that AI models were developed and trained using the RE4DY framework 
in close collaboration with CORE and ATLANTIS, who supported the implementation of 
Federated Learning architecture. One of the key challenges was harmonizing different 
technical requirements from multiple partners. Through joint efforts, a standardized and 
integrated Federated Learning solution was achieved, which the partner identified as one 
of the key deliverables of the project. Although no formal benchmarking data was yet 
available, the partner expects that aggregating data across systems in a federated 
manner will enhance model performance and scalability. The primary business use case 
where Federated Learning was applied focused on the prediction of tool lifetime in machine 
operations, marking a significant application of AI within the production process. 

Progress in Integration 

• RE4DY Framework Integration: Technical Achievements and Pathways to 
Standardization 

In the interview, the partner confirmed the previously reported "Good progress" in 
integrating RE4DY components, including the Data Container, Federated Learning, and the 
Data-as-a-Product concept. They emphasized that these elements were all successfully 
implemented in the pilot and played a crucial role in enabling the technical achievements 
of the use case. 

The partner explained that integration across layers of the RE4DY reference architecture 
was made possible through strong collaboration with partners such as CORE, ATLANTIS, 
and Siemens. However, one key challenge was the lack of standardization among systems 
and controllers used by different partners. Extracting consistent information from diverse 
machine controllers (e.g., Siemens and others) required additional effort to harmonize data 
content, not just format. The partner identified the standard definition of data structures, 
such as a Digital Product Passport, as a major learning outcome and an essential step for 
future scalability. They also highlighted the potential value of including mapping tools in 
the RE4DY architecture to automate the conversion of data from various controller formats 
into a standardized structure suitable for the Data Container or data marketplace. From a 
business perspective, the partner noted that the objectives of the pilot could not have 
been achieved without the RE4DY framework. Access to harmonized, cross-partner data 
enabled the delivery of accurate, valuable KPI predictions, which will bring long-term 
benefits as these solutions are further industrialized and brought to market. 

Comparison with Initial AS-IS Results 

In the initial analysis, the partner assessed their maturity as "Integrated" for both the 
Product-Service Lifecycle and Supply Chain dimensions. The ambition for the Product-
Service Lifecycle was to reach the "Exploited" level, expanding from economic and 
environmental indicators (LCC and LCA) toward incorporating Social LCA and more holistic 
sustainability metrics. In the final interview, the partner reaffirmed that data integration 
and synchronization across multiple systems (e.g., Siemens, Metrology, Innovalia) had 
been achieved through collaboration and structured data exchange, particularly within 
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the data container and federated learning frameworks. These integrations laid the 
foundation for enhanced product and service traceability and predictive performance 
monitoring, aligning with the target of reaching an "Exploited" level in the Product-Service 
Lifecycle. While full implementation of Social LCA may still be evolving, the foundational 
steps to enable it, such as harmonized data structures and cross-platform 
interoperability, have been put in place. For the Supply Chain dimension, the partner 
maintained its "Integrated" level. However, the interview suggests consolidation and 
strengthening of this status. This includes a growing ability to track lifecycle and 
operational metrics across supply chain actors, which reinforces their readiness for 
broader ecosystem-level integration. 

4.3.2 Integrated Machine Tool Performance Self- 
Optimization Pilot (GF)-KPI Discussion 

Performance Overview & KPI Progress 

The project status is described as good. GF planned a set of applications aligned to four 
business processes and, despite delays, the last applications have now been 
implemented, are being rolled out, and are entering a phase where all components are 
tested. The focus for the closing months is to update the KPIs based on these integrated 
applications. The team cannot yet provide precise uplift figures relative to Month‑24 
because the past year was devoted to completing the data‑collection campaign and 
advancing the implementation to something market‑ready; KPI re‑evaluation is therefore 
scheduled for the end of the project, which is one reason a project extension was 
requested. Within the business scope, a central use case is prediction of tool lifetime for 
machines, but quantitative effects are not yet reported. 

Operational Insights 

Over the last year the most relevant operational change was enabling data access for two 
distinct families of CNC controllers. This decision broadened coverage to what the team 
believes is roughly eighty percent of the market but required duplicating integration 
efforts, which had not been anticipated at the outset. There were no specific incident‑level 
disruptions affecting performance beyond project delays; GF notes organisational 
restructuring that slowed implementation and, in turn, delayed KPI updates and motivated 
the extension request. 

Data Collection & Accuracy 

The consortium invested early effort in a common data model, and GF reports that this 
upfront alignment avoided surprises in collection and limited data‑quality issues. Data 
collection revolves around machine data made available through an edge‑and‑cloud 
setup. GF highlights an effective edge computer and an Azure‑based toolchain, with 
applications packaged as Docker containers to structure the architecture and 
deployment. This combination gave the team flexibility to operate at edge and cloud levels 
as needed. 

Operators’ Feedback  
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Operator engagement was most intense during the training phase for the 
machine‑learning components. Operators’ work practices, such as leaving machines 
running overnight or through weekends, required the project to adjust data‑collection 
procedures and labelling so that training data remained accurate and usable. Without this 
back‑and‑forth, the training phase would not have been feasible. 

Challenges and Mitigation 

The multi‑source synchronisation problem was the dominant technical challenge, 
compounded by heterogeneity across controller vendors and partner systems. GF and 
partners mitigated this by building the data container–based integration, establishing the 
edge–cloud setup, and standardising enough to proceed with training and application 
rollout. Organisationally, GF’s internal restructuring introduced delays that slowed 
implementation and postponed KPI updates; the project extension provided time to finish 
integration and shift attention back to KPI evaluation. 

Lessons Learned 

The pilot’s ambition, four business processes with many partners, made a single large 
team unwieldy. Splitting into focused groups per business process, with coordination 
across groups, proved more efficient. The experience reinforces the need for standard 
data definitions that support digital product‑passport use cases, as well as practical 
tooling for mapping and normalising controller outputs into the container schema. 

Next Steps and Recommendations 

Immediate priorities are to complete testing, release the ready applications, finalise 
agreements with partners, and then update the KPIs on the basis of the integrated solution. 
From a sustainability perspective, GF would like to keep the pilot group or an equivalent 
collaboration channel active after project close so that partners can access tools, 
services, and contacts as needed. In practical terms, the recommendations are to maintain 
the edge–cloud plus containerised‑apps deployment pattern, pursue standardisation for 
synchronisation and digital product‑passport‑aligned data structures, introduce mapping 
tools for controller heterogeneity, and proceed with federated learning for the tool‑lifetime 
use case while planning quantitative comparisons as KPI updates are executed. 

 

4.3.3 Multi-Plant Predictive ZDM Turbine Production Pilot 
(AVIO)-ToBe 

Pilot business processes 

• Updates on Milestones and Emerging Challenges Since the Initial Survey 

The partner confirmed that the progress remains positive and highlighted an important 
new milestone not captured in the initial survey: the successful deployment of the Alida 
solution in Avio’s Virtual Private Cloud (VPC) with valuable collaboration and support of ENG. 
This step marked a significant evolution from the earlier architectural design phase to an 
actual operational implementation within the company's environment. The partner 
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emphasized that deploying the solution within their internal infrastructure, rather than 
relying on an external setup was a non-trivial task and required considerable effort and 
coordination. 

• Overcoming Bottlenecks in Integrating the Reference Architecture into the 
Production Environment 

The partner explained that the initial plan to use an external infrastructure had to be 
revised due to cybersecurity constraints and internal data-sharing policies. As a result, 
the team had to reallocate internal resources and engage additional departments that 
were not originally part of the project team. On the technical side, ENG played a critical 
role in co-designing and adapting components of the architecture to make them 
compatible with Avio’s internal systems. This collaborative effort enabled successful 
deployment in a real-world, constraint-heavy industrial environment, which the partner 
described as a major added value for the project. The ability to implement and scale the 
pilot solution in such a setting demonstrates the project’s effectiveness and real-world 
applicability. 

Data Sharing and Integration 

• Challenges in Connecting Data Sources and Managing Production Data Volume 

The partner confirmed that progress remained “Good”, especially considering the 
complexity of their environment and the available resources. They noted that finalizing the 
connection of machines to the infrastructure was particularly challenging, and despite 
partial success, there is still a lack of full automation in the data pipeline. They emphasized 
that for some pilots, data was collected directly from machines, while for others, data such 
as defect images was uploaded manually for offline analysis. A key challenge highlighted 
was the absence of a digital thread, that is, a seamless, connected flow of information 
linking data points across systems. The partner explained that while they had data in 
various silos, they lacked the relational structure to connect quality notifications to 
specific manufacturing steps or machine data. This gap significantly limits their ability to 
trace defects or correlate insights across processes, underscoring the need for stronger 
data governance and integration frameworks. 

• Relevance and Applicability of the ‘Data as a Product’ Concept within the Pilot 
Context 

The partner noted that while they did not have the opportunity to fully explore this concept 
during the project, they recognized its potential value, particularly in contexts where data 
exchange with machine OEMs could contribute to collective learning and defect detection 
improvements. They also emphasized that even within their own organization, across 
geographically distributed plants, data sharing could offer internal value. However, legal, 
IP, and export control constraints still pose challenges for such exchanges. When asked 
about their experience with the Data Container tool provided by UPV, the partner reiterated 
that while its effectiveness for their specific case was limited, it did contribute to improved 
data visibility and transparency. They suggested that greater internal data maturity and 
stronger data governance practices are prerequisites to fully benefiting from such tools. 
The partner emphasized that their current data infrastructure lacks the foundational 
layers, such as defined ontologies, metadata, and structured relationships necessary to 
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take full advantage of unified APIs and federated data platforms. To illustrate this point, 
the partner provided a practical example: although they could collect time-series data 
from a machine, it was still difficult to associate that data with a specific part's serial 
number or correlate it with quality notifications. This lack of structured metadata and 
integrated processes significantly hampers efforts to build a robust digital thread or adopt 
tools like the Data Container effectively.  

AI Models and Federated Learning 

• Updates on the Effectiveness of Federated Learning: Benefits and Challenges 
Since the Initial Survey 

The partner explained that the neutral rating was largely influenced by data quality 
issues. The pilot operates in a high-value, low-volume industrial setting, which means that 
the datasets available, particularly for defect detection were small, sparse, and highly 
variable. This made it difficult for AI models, including those trained using Federated 
Learning, to generate accurate and confident results. The partner emphasized that the low 
maturity and inconsistent nature of the available data significantly limited the ability to 
demonstrate the added value of the approach. He further noted that although Federated 
Learning was used in a third business scenario involving data exchange between 
machines, the challenge remained the same, insufficient data structure and consistency. 
The lack of meaningful results in this scenario, however, was not due to limitations in the 
Federated Learning methodology itself, but rather the immature data infrastructure 
supporting the pilot. The partner acknowledged the potential of Federated Learning and 
viewed the implementation experience as valuable and relevant, despite the technical 
difficulties and limitations encountered in practice. 

Progress in Integration 

• Assessment of the Suitability of the RE4DY Reference Architecture for the Pilot Use 
Case: Suggestions for Adaptation and Improvement 

The partner confirmed that the reference architecture was both sufficient and flexible for 
their needs. They indicated that no major elements were missing, and that the architecture 
provided a solid foundation for implementing their solution. While some components had 
to be adapted to fit their internal technological stack and organizational policies, 
particularly due to cloud constraints and cybersecurity requirements. These adaptations 
were expected and manageable within the framework’s flexible design. 

The partner emphasized that the RE4DY architecture functioned as a guiding structure, 
which could be customized to align with company-specific needs. For example, certain 
identity management or cybersecurity tools included in the reference framework could 
not be used as-is due to internal compliance policies, but this was not seen as a limitation 
of the architecture itself. Instead, the partner saw this adaptability as a strength, 
confirming that the architecture was efficient and sufficient to meet their pilot’s technical 
and business requirements. 

• Comparison with Initial AS-IS Results 

The analysis of the Performance Dimension, based on both survey responses and 
interview insights, highlights significant progress made across key areas, while also 
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identifying opportunities for continued development.  In Operational and Technical 
performance, the pilot specified their initial level as Defined, moving toward the Exploited 
level, where AI/ML models and simulation tools are applied, is underway, though further 
work is needed to enhance data automation and establish a stronger digital thread. In the 
Economic dimension, performance is being effectively monitored, and the ambition to 
implement predictive financial models is clear. Achieving this will require improvements in 
data quality and volume, which the pilot is actively addressing.  For Environmental and 
Product-Service Lifecycle areas, efforts to move from Managed to Defined show good 
momentum. While challenges such as data fragmentation persist, the groundwork has 
been laid, making this transition realistic with targeted enhancements. The Social 
performance area remains stable at a Defined level, with current tools deemed sufficient 
for ongoing monitoring. In the Supply Chain dimension, the pilot is progressing well and 
aiming to integrate sustainability metrics into existing evaluations. To fully reach the 
Integrated level, the focus will be on strengthening data governance and enabling secure, 
compliant data sharing across internal sites.  

 

 

 

4.3.4 Multi-Plant Predictive ZDM Turbine Production Pilot 
(AVIO)-KPI Discussion 

Performance Overview & KPI Progress 

After the month‑18 review, AVIO narrowed and clarified the KPI set. For the predictive‑quality 
pilot on machines, the KPI was defined as OEE, with a forecast of a one‑percentage‑point 
increase at machine level. This remains a relevant and conservative expectation, but any 
observed OEE movement is difficult to attribute solely to the pilot because shop‑floor 
teams are continuously improving processes in parallel. Moreover, the team did not 
established a clear correlation between machine signals and quality outcomes, so even a 
positive OEE trend may be driven by other activities. For the image/defect‑recognition 
pilots, the KPI comparing algorithm accuracy to operators has not yet reached parity. The 
main reason is data quality: there are few defective examples per class and a large variety 
of defect types, so the models have insufficient, imbalanced training data. A separate KPI 
anticipated about a 10% reduction in training time via the inspection/training interface; user 
interest and early feedback are positive, but formal reductions cannot be claimed because 
regulated training hours remain fixed. 

Operational Insights 

Over the last 12 months, ongoing shop‑floor optimizations unrelated to the pilot likely 
influenced KPIs, which complicates causal attribution for the OEE metric. A major 
operational milestone was deployment of the solution inside AVIO’s environment: a chunk 
of the Alida stack was installed with ENGINEERING’s support and component adaptations. 
This shift was driven by cybersecurity and data‑sharing constraints that prevented using 
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an external platform and required reallocation of resources and engagement of additional 
internal teams. 

Data Collection & Accuracy 

Data capture has progressed but still faces last‑mile issues. One pilot streamed machine 
data, while the imaging pilot relied on capturing pictures with different systems and 
uploading them for offline analysis, so end‑to‑end automation is not yet in place. The most 
significant accuracy limitation is a gap in the digital thread: it is hard to link machine time 
series to the exact part serial numbers and to the specific operation and quality 
notifications, which leaves datasets siloed and weakly cross‑referenced. These gaps are 
rooted in data‑governance maturity, including ontology and cataloguing. Regarding tools 
and systems, AVIO can provide a precise list by reconciling the reference architecture with 
in‑house systems together with the technical lead. 

Operators’ Feedback 

Operators and manufacturing engineers responded very positively to the interface for 
training and inspection support. AVIO is preparing the final shop‑floor sessions, and 
capturing operator comments in the final deliverable was suggested because the solution 
is appreciated even if daily use is not yet established. While the interface likely improves 
robustness and knowledge transfer and could reduce practical learning time, regulatory 
requirements mean mandated training hours cannot be reduced. 

Challenges & Mitigation 

Security and data‑sharing constraints meant an external platform could not be used; the 
team mitigated this by deploying inside the VPC, engaging additional internal teams, and 
adapting components with the technology partner’s support. Last‑mile connectivity and 
automation of machine‑to‑platform data flows remain challenging. Digital‑thread gaps, 
especially linking time series to serial numbers, operations, and quality notifications, limit 
analytical power. For vision use cases, limited and imbalanced defect data constrained 
model accuracy. 

Lessons Learned 

Future pilots should prefer simpler, better‑instrumented use cases with more examples 
per class and fewer defect types to accelerate learning and measurable KPI lift. They 
should invest earlier in data governance and management, ontology, catalogues, 
ownership, so analytics and any data‑container approach rest on solid foundations. They 
should also anticipate industrial constraints from day one and plan for on‑prem/VPC 
deployment when external platforms are unlikely to be permitted. 

Next Steps & Recommendations 

The immediate priorities are to close the digital thread across MES, quality, and machine 
data; to formalize a data‑governance program; and to improve model readiness by 
enriching the dataset, including exploring synthetic data where appropriate. Given the 
successful internal deployment, continuing with a secure‑by‑design, AVIO‑hosted pattern 
will reduce future integration friction. Post‑project, AVIO does not expect ongoing support 
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from the consortium; occasional assistance from the technology partner for running the 
internal solution may be requested, but no standing consortium resources are foreseen. 
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5 Conclusions 
 

The RE4DY industrial pilots are taking an important step toward manufacturing ecosystems 
which have been digitally transformed and powered by AI.  The pilots show how to employ 
the RE4DY reference framework to integrate cutting-edge digital tools, federated AI 
models, and advanced data architectures from the initial stages in several business and 
industrial environments.  among the most important technological advances are  

• The ability to effectively incorporate vendor-specific tool databases and virtual 
commissioning processes into CAM software 

• Federated predictive maintenance systems that respect data privacy while 
offering useful insights 

• In-process metrology solutions which make adaptive manufacturing more intuitive 
• AI-driven defect detection with explainability that boosts both operational quality 

and operator training 

These implementations result in broad operational benefits, like reduced setup and 
inspection times, extended tool lifetime, higher machine uptime, lower maintenance costs, 
lower scrap rates, and higher production throughput. The pilots’ KPI assessment illustrates 
tangible business impacts: GF Fraisa expects up to 30% tooling cost reductions and 10% 
carbon footprint decreases, alongside a potential increase in machine availability up to 
95%. Avio Aero reports a 44% reduction in quality control time, significant enhancements 
in defect detection accuracy, a 25% reduction in training hours, and positive OEE trends on 
EDM machines. These results underscore the practical value of federated learning and AI 
within industrial environments, while simultaneously identifying challenges related to 
dataset quality, system integration, and regulatory compliance that require continued 
attention. The 6P performance methodology proves effective for monitoring digital 
maturity and guiding transformational strategies. While current maturity ranges from 
managed to integrated across dimensions such as Operational-Technical, Economic, 
Environmental, and Supply Chain, the outlook targets full exploitation where AI-powered 
decision making, lifecycle sustainability assessments, and seamless data interoperability 
are embedded in daily operations. This requires further standardization efforts, enhanced 
data synchronization, stronger digital threads, and scalable edge-cloud federated 
solutions. 

Looking ahead, the RE4DY pilots lay a robust foundation for extending AI-driven digital 
transformation across broader industrial sectors and supply chains. Future initiatives 
should focus on scaling federated learning infrastructures, enriching and diversifying 
datasets, advancing annotation and data governance practices, and driving regulatory 
acceptance of AI-assisted inspection and training processes. Continued partnership and 
knowledge sharing among technological, industrial, and academic stakeholders will 
accelerate the realization of smarter, more sustainable, and highly competitive 
manufacturing enterprises in the digital age. 
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6 Annex 1 
 

1st Iteration of analysis – (AS-IS situation)6 

 

 
6 Survey link: https://polimi.eu.qualtrics.com/jfe/form/SV_3JcrkAaAeymKx2S 

https://polimi.eu.qualtrics.com/jfe/form/SV_3JcrkAaAeymKx2S
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7 Annex 2 
KPIs Interview Questions 

Performance Overview & KPI Progress 

• Which KPIs from D4.2 have improved since M24, and by how much? (E.g. percentage 
increase in yield, efficiency, uptime.) 

• Are there any KPIs that have not met expected targets? What factors contributed to 
this? 

Operational Insights 

• What operational changes or process improvements have impacted KPIs during the 
last 12 months of the pilot? 

• Can you highlight any incidents or disruptions that temporarily affected performance 
metrics? 

Data Collection & Accuracy 

• How reliable and timely has the data capture process been? Have there been any data 
gaps or quality issues? 

• Which monitoring tools or systems provided the most valuable data for KPI monitoring? 

Operators’ Feedback 

• What insights did you gather from operators (via surveys or interviews) that influenced 
KPI outcomes? 

• Engagement with operators: how did their feedback shape operational adjustments? 

Challenges & Mitigation 

• What key challenges have you encountered since M24, and how have you addressed 
them? 

• What lessons learned would you highlight to improve process operations for future 
pilots? 

Next Steps & Recommendations 

• Based on current KPI performance, what are your priorities going forward? 

• Are there any support actions (resources, training, tools) required from the consortium 
to maintain or further improve performance? 

 


