B Ref. Ares(2025)8382115 - 03/10/2025

REZDY

MANUFACTURING DATA NETWORKS

EN (ndustrial pilot area validation & pilot benchmark and KPIs_Process Operations

Document Owners [EeI@IRIM

(ofelalddl=IVldelg=l -\ G, CERTH, Atlantis, AVIO, CNR, +GF+, FRAISA, Siemens, DataPixel, SSF, Core, MIR

Dissemination EU]=iRle

BENCEN 50.09.2025

Version YA




R E4 DY D5.3. Industrial pilot area validation

MANUFACTURING DATA NETWORKS & pilot benchmark and KPIs_Process Operations

Table of contents

EXECUTIVE SUIMIMIBITY oottt ettt ettt 9
1 IO AUCTION ettt 10
Context and scope of this dOCUMEBNT ... 10
Relationships among other deliverables ... 10

2 PILOT 31 GF FrBISA oo 11
GENErAL INTrOTUCTION 1ot 11
2.8 BUSINESS SCEMEIO Tttt 13
2.2 1Full-scale implementation ., 13
2.a.2 Industrial trials of the Pilot ... 18
2.a.3 Final KPIs monitoring and validation ... 20

2.0 BUSINESS STENMAITO 2t 22
2.0 1 Full-scale iImplementation .. 22
2.b.2 Industrial trials of the PIloT ..o 37
2.b.3 Final KPIs monitoring and validation ... 38
2.0.3.3 Final KPI Assessment and Business IMPact ... 39

2.C BUSINESS STEMBITO Sl ettt 41
2.c.1Full-scale implementation . 41
2.c.2 Industrial trials of the Pilot ..o 46
2.c.3 Final KPIs monitoring and validation. ... 46
2.c.3.3 Final KPl Assessment and BUusingss IMPact ..o 47

2.0 BUSINESS STENMAITO 4ottt 49
2.d.1Full-scale implementation . 49
2.d.2 Industrial trials of the PIlot ... 52
2.d.3 Final KPIs monitoring and validation ..o 53

S POt 4 AVIO ABI D e 57
3.8 BUSINESS SCENAMOS T8 2. it 57
3.a. 1 Full-scale IMpPlementation ... 57
3.a.2 Industrial trials of the PIlot .. 79
3.a.3 Final KPIs monitaring and validation ... 79
3.b.TFull-scale IMmplementation . ... 91
3.b.2 Industrial trials of the Pilot .. 103
3.b.3 Final KPIs monitoring and validation ... 103

4 Performance Monitoring FrameWOorK ... 110

Horizon Europe Grant Agreement ID: 101058584
Page 2 of 141




R E4 DY D5.3. Industrial pilot area validation

MANUFACTURING DATA NETWORKS & pilot benchmark and KPIs_Process Operations
4.1 Introduction of methodalogy (BP-Perfarmance Pillar] ... 10
4.2 Analysis of the Performance Pillar (AS-1S) = SUIMNVEY ..o 114

4.2.1Integrated Machine Tool Performance Self Optimisation Pilot (GF)-AS-IS........... 114
4.2.2 Multi-Plant Predictive ZDM Turbine Production Pilot (AVIO)-AS-IS ..., 15

4.3 Analysis of the Performance Pillar (TO-BE) = INtErVIEW.....o.ooo o 118
4.3.1Integrated Machine Toaol Performance Self- Optimization Pilot (GF) - TO-BE........ 119
4.3.2 Integrated Machine Tool Performance Self- Optimization Pilot (GF)-KPI Discussion
........................................................................................................................................................................... 121
4.3.3 Multi-Plant Predictive ZDM Turbine Production Pilot (AVIO)-ToBe ... 122
4.3.4 Multi-Plant Predictive ZDM Turbine Production Pilot (AVIO)-KPI Discussion........ 125

O LN CIUSIONS et 128
B AANINIBX T et 129
7 ANITIEX 2 et 140

Horizon Europe Grant Agreement ID: 101058584
Page 3 of 141




R E4 DY D5.3. Industrial pilot area validation

MANUFACTURING DATA NETWORKS & pilot benchmark and KPIs_Process Operations

List of Figures

Figure 1 - General architecture of GF pilot showing the RE4DY toolkit elements deployed

ACrOSS fOUr BUSINESS PIrOCESSES oo it 12
Figure 2 - ToolExpertintegrated in SIEmMens NX ... 13
Figure 3 - Geometrical data send to NX Tool Only Product Data ..o 14
Figure 4 - Cutting data Send t0 NX TOOU ..o 14
Figure 5 - Transfer tool geometry data and cutting data to NX jobs ..o, 15
Figure B - Geometrical data and cutting data in Operations Navigator ..o, 15
Figure 7 - Milling simulation in Create MyVirtual Maching ... 16
Figure 8 - Trace of energy consumption in Create MyVirtual Machine ..., 16
Figure 9 — Architecture for Virtual commisSSIiONING ..o 17
Figure 10 — Configure t0 OFdEI PrOCESS oot 20
FIQUre 11 = FPAM @rChiECIUINE ..o 22
Figure 12 — FPAM Server & CUBNT SEIVICES ..o 23
Figure 13 - Federated Maintenance for Milling Machines (FEDMA) ... 27
Figure 14 — FPAM USEr INTBITACE ..o 29
Figure 15 - Analytics section with the designed panels zoomed in for a selected tool.....30
Figure 18 - Select jobs and perform tool wear inference action............ccoooooeieiiiii, 31
Figure 17 — Select jobs and start training aCtion ..., 31
Figure 18 = FEDMA USEI INTBITACE ..o

Figure 18 - Initiate FEDMA Model Training through Ul
Figure 20 - Initiate FEDMA INfEIENCE ..o
Figure 21 - FEDMA job-SpPeCifiC rESULS ..o
Figure 22 — FEDMA Validation StED .o
Figure 23 - FEDMA tool-specific results
Figure 24 - VEGA Machine Spindle Monitoring Application Architecture ..........cccccooveveeeen, 41
Figure 25 - Machine Diagnosis Application ArchiteCture ..o 42
Figure 26 - Confusion matrix for the resulting predictions of the machine learning model
for the drive train test, as compared to the expert labelling

Figure 27 — VEGA Spindle diagnosis iNtErfaCe ...
Figure 28 - VEGA Spindle diagnosis sensor statistics ...,

Figure 29 - VEGA Spindle diagnosis for different machines and spindles in a shopfloor .. 45
Figure 30 - Machine Diagnosis Application INterface ... 45
Figure 31 - BUSINESS SCENAIIO 4 SETUD oot 49
Figure 32 - Part measurement in the M3 SOftWare ..., 51
Figure 33 - Metrology Equipment at the SSF used for the final tests ... 52
Figure 34 — Multi-axis maching Calibration ... 53
Figure 35 - RE4DY Toolkit <-> Reference Architecture Mapping ....c.cccooooeeiiieeeiec 58
Figure 36 - Diagram showing the relations between the RE4DY toolkit components selected
fOr the AVIO ABIO USE CABSE oot 58
Figure 37 - Business Cases 1 & 2 Deployment ArchiteCtUIre ..o &]0]
Figure 38 - ALIDA pipeline development Workflow ..., 61
Figure 39 - GPU-equipped VMs for training and inference phases..........ccccccocoooeieeecc 62
Figure 40 - Single-defect detection mode confusion MatriX ..o 68
Figure 41 - Single-defect Model — Carrect PrediCtion ... 68
Figure 42 - Single-defect model - Background misclassified as defect............ccccocoeeiin. 69

Horizon Europe Grant Agreement ID: 101058584
Page 4 of 141




R E4 DY D5.3. Industrial pilot area validation

MANUFACTURING DATA NETWORKS & pilot benchmark and KPIs_Process Operations
Figure 43 - Single-defect model - Wrong defect tUPe .o 69
Figure 44 - Single-defect model - Prediction without ground truth.........ccoooiiiii 70
Figure 45 - All-defect detection model confusion MatriX ... 2
Figure 46 - All-defect model — Correct PrediCtionNS ..o 73
Figure 47 - All-defect detection model - Predictions with no ground truths ... 73
Figure 48 - Saliency Map generated by XAl indicating the Rol of the defect detection model.
.................................................................................................................................................................................... 75
Figure 49 - Updated Smart Vision Suite architecture showing the XAl module and
COMTESPONAING AP et 76
Figure 50 - Example of heatmap returned by the XAl Service superimposed to the image of
P DB CE oo 7
Figure 51 - XAl Service status indicator ZOOM 1N .o, 7
Figure 52 - Updated toolbar featuring the XAl Service status indicator ..., 7
Figure 53 - Design of EXPeriment = SEE-UD . 80
Figure 54 — Example of filters application ... 81
Figure 55 - Summary of the variables for DO ... 81
FIgure 58 — EXaMPLE Of VIBW oo 82
Figure 57 - Example of View with highlighted defects ... 82
Figure 58 - Example of view with filter applied ... 83
Figure 59 - Inclination Horzontal/Vertical ... 83
Figure B0 - Roughness Horizontal/Vertical ... 83
FIQUIrE BT = FILEEIS COMPAITSON ittt 84
Figure B2 — Summary table of reSULS ... 84
FIgUIrE B3 — OPrallr USBOER oot 85
Figure B4 — Overall training BrOCESS i 89
Figure B5 - Training ProCeSS COMPATISOMN .ottt 89
Figure B6 - Time reduction in Training PrOCESS ..o 90
Figure 67 - Implementation of the RA within the AVIO Aero pilot........oo, 91
Figure B8 - AVIO Aero-specific Implementation of Data Container ... 92
Figure B9 - Deployment architecture for AVIO Aero Business Scenario 3. 92
Figure 70 - Prediction workflow used by ATL and CNR........cooiiiiii e 94
Figure 71 - LSTM-based Autoencoder arChitECIUIE ..o 95

Figure 72 - Anomaly detection output example in two separate visualisations. On the left,
the signal is deemed as anomalous and, on the right, the specific anomalous pattern is

accompanied by a numerical indication of the anomaly SCOre ..o 98
Figure 73 — Reconstruction error fOrmuULa ... 100
Figure 74 - Interactive dashboard for analytics visualization ... 101
Figure 75 - Interactive dashboard for a specific SEQUENCE ... 101
Figure 76 - Presentation environment logging mechanisSm ... 102
Figure 77 — Ul Dashboard: Process MONItOrNg ..o 107
Figure 78 - Ul Dashboard: Anomaly DeteCtionN ..o 107
Figure 79 - Equipment A04858 (Pomigliano) - LOSSES trendS. ..o 108
Figure 80 - Equipment AB4858 (Pomigliano) — OEE trend ..o 108
Figure 81 - Equipment AB4673 (Bielsko-Biala) - LoSSes trends ..o 108
Figure 82 - Equipment AQ4673 (Bielsko-Biala) - OEE trend ..o 109
Figure 83 — The BPS MOGEL ... 110
Figure 84 - BPs Madel — Performance dimenNSion ..o 12
Figure 85 — Radar chart — PerformanCe AViO ..o 117

Horizon Europe Grant Agreement ID: 101058584
Page 5 of 141




R E4 DY D5.3. Industrial pilot area validation

MANUFACTURING DATA NETWORKS & pilot benchmark and KPIs_Process Operations

List of Tables

Table 1 - KPIs identified for BPT ... 20
Table 2 - KPIs identified fOr BP2 ... 39
Table 3 - KPIs identified fOr BP3 ... 47
Table 4 - KPIs identified fOr BP4 ... 55
Table 5 - Single-Defect Detection MODEL Performance MetriCs ... 87
Table 6 - AIl-DEFECTs DETECTION MODEL PERFORMANCE METRICS ..o, 71
Table 7 = PIlot 1and PIlOT 2 KPIS .. 86
Table 8 = Pilot 1 and Pilot 2 FINALKPIS ..o 87
Table 9 - Complete set of features used as input to the model ... 89
TADLE 10 = PILOT B KPIS 1. 104
Table 11 = Signal details ..o, 105
Table 12 = Maching Status SIGNaL. .. 105
Table 13 = PIlot 3 FINALKPIS L 106
Table 14 - Summary of results of 1St [teration GF ... 14
Table 15 - Summary of results of 1st Iteration AVIO ... 116

Horizon Europe Grant Agreement ID: 101058584
Page 6 of 141




R E4 DY D5.3. Industrial pilot area validation

MANUFACTURING DATA NETWORKS & pilot benchmark and KPIs_Process Operations

Document Status

Deliverable Leader POLIMI

Internal Reviewer 1 UNINOVA
Internal Reviewer 2 NOVA
Work Package WP5

D5.3: Industrial pilot area validation & pilot benchmark

Deliverable ]
and KPIs_Process Operations

Due Date M40
Delivery Date 30.09.2025
Version Vo1

Version History

0.1 Nima Rahmani Choubeh (POLIMI); Table of Contents

0.2 Pietro Greco (ENG); Section 3

0.3 Roberto Perez (+GF+); Section 2

0.4 Nima Rahmani Choubeh (POLIMI); Section 4

0.5 Nima Rahmani Choubeh (POLIMI); Section 1, Section 5

0.6 Pietro Greco (ENG), Roberto Perez (+GF+); Section 4 (validation)
0.7 Erica Perego (MIR); Section 2, Section 3 (validation)

Nima Rahmani Choubeh, Walter Quadrini (POLIMI); Proof-check

0.8 reading, content harmonization

0.9 Ruben Costa (UNINOA): First Internal Review

1.0 NOVA: Second Internal Review

o0 Nima Rahmani Choubeh, Walter Quadrini (POLIMI); addressing

reviewers' comments, finalisation

Further Information

More information about the project can be found on project website: https://red4dy.eu/

Disclaimer

The views represented in this document only reflect the views of the authors and not the
views of the European Union. The European Union is not liable for any use that may be

made of the information contained in this document.

Furthermore, the information is provided “as is” and no guarantee or warranty is given that
the information is fit for any particular purpose. The user of the information uses it at its

sole risk and liability.

Horizon Europe Grant Agreement 1D 101058384
Page 7 of 141



https://re4dy.eu/

RE4ADY

MANUFACTURING DATA NETWORKS

D5.3. Industrial pilot area validation

& pilot benchmark and KPIs_Process Operations

Project Partners

Number‘ Participant organisation name Acronym ‘
1 ASOCIACION DE EMPRESAS TECNOLOGICAS INNOVALIA INNO
1.1 CBT COMUNICACION & MULTIMEDIA SL CBT
2 CHALMERS TEKNISKA HOGSKOLA AB Chalmers
3 INTERNATIONAL DATA SPACES EV IDSA
4 VOLKSEWAGEN AUTOEUROPA, LDA VWAE
S5 ASSECO CEIT AS CEIT

UNINOVA-INSTITUTO DE DESENVOLVIMENTO DE NOVAS UNI
6 TECNOLOGIAS-ASSOSIACAD
7 FILL GESELLSCHAFT MBH FILL
8 AVL LIST GMBH AVL
S VISUAL COMPONENTS OY VIS
10 UNIVERSIDAD MIGUEL HERNANDEZ DE ELCHE UMH
11 ATLANTIS ENGINEERING AE ATLANTIS
12 DATAPIXEL SL DATA
13 CORE KENTRO KAINOTOMIAS AMKE CORE
14 UNIVERSITETE | OSLO uio
15 GE AVIO AVIO
16 ENGINEERING-INGENIERIA INFORMATICA SPA ENG
17 POLITECNICO DI MILANO POLIMI
18 ATOS IT SOLUTIONS AND SERVICES IBERIA SL ATOS IT
18.1 ATOS SPAIN SA ATOS ES
€] KATHOLIEKE UNIVERSITEIT LEUVEN KU
20 NETCOMPANY-INTRASOFT SA INTRA
o1 NOVA ID FCT - ASSOCIACAQO PARA A INOVACAQO E NOVA
DESENVOLVIMENTO DA FCT
o5 INDUSTRY COMMONS FOUNDATION ICF
(INSAMLINGSSTIFTELSE)
53 i’T\‘FAI;I_IrF;glgENTRO EREVNAS KAl TECHNOLOGIKIS CERTH
24 GRUPO S 21SEC GESTION SA S21SEC
25 UNIVERSITAT POLITECNICA DE VALENCIA UprPVv
26 CONSIGLIO NAZIONALE DELLE RICERCHE CNR
27| SCCIE0AD ANDALOZA PARA EL DESAROLO D A5 | savoere
28 SWITZERLAND INNOVATION PARK BIEL/BIENNE AG SSF
29 GF MACHINING SOLUTIONS AG Ag\imiN
30 FRAISA SA Fraisa SA
31 SIEMENS SCHWEIZ AG SIE
32 MIRAITEK SRL MIR

Horizon Europe Grant Agreement ID: 101058584
Page 8 of 141




R E4 DY D5.3. Industrial pilot area validation

MANUFACTURING DATA NETWORKS & pilot benchmark and KPIs_Process Operations

Executive Summary

This document reports the comprehensive industrial pilot area validation, benchmarking,
and KPl assessment related to process operations within the RE4DY project. It focuses on
full-scale implementations, industrial trials, and performance monitoring of two major
pilots GF Fraisa and Avio Aero. Each pilot integrates advanced Al and digital technologies
following the RE4DY reference architecture to address key business scenarios such as
tool selection and virtual process preparation, tool lifetime prediction through federated
learning, machine maintenance via predictive analytics, and adaptive digital
manufacturing using in-process metrology.

GF Fraisa pilot demonstrates successful integration of the FRAISA ToolExpert with Siemens
NX CAM for tool and process preparation, yielding reduced setup times, fewer errors, and
optimized energy consumption. Advanced Al applications developed by CORE and Atlantis
leverage on federated learning to deliver predictive maintenance and tool wear prediction,
achieving up to 80-83% accuracy and promising further improvements. Machine
maintenance applications monitor critical components with Al models to predict failures,
enhancing machine uptime by 10-15% and reducing maintenance costs by up to 30%. The
Adaptive Digital Manufacturing pilot employs in-process metrology, enabling closed-loop
control that slashes machine verification time and production scrap rate, while improving
cycle times.

Avio Aero pilot introduced automated defect detection leveraging state-of-the-art deep
learning (YOLOV8) under constrained datasets. Despite data limitations and annotation
challenges, models exhibit patential for effectively detecting even subtle surface defects.
The pilot also includes explainable Al features and a cognitive training suite to enhance
inspector performance and reduce training hours. Furthermore, predictive quality and
maintenance frameworks based on federated learning have been deployed successfully,
delivering measurable impacts on Qverall Equipment Effectiveness (OEE) in manufacturing
using EDM machines.

The BP Performance Monitoring Framework is applied to systematically monitor digital
maturity and performance impact across technical and socio-business dimensions in
both pilots. Survey and interview results reveal significant progress in process integration,
data sharing, federated learning adoption, and KPI achievement, although barriers such as
cybersecurity constraints, data standardization, and infrastructure heterogeneity remain.
Lessons learned emphasize the importance of standardized data models, robust digital
threads, scalable federated learning architectures, and sustained cross-arganizational
collaboration.
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TIntroduction

Context and scope of this document

This document reports the industrial pilot area validation of work package five of RE4DY
project. The full scale-up implementation of the industrial pilots (AVIO AERO and GF) has
been fully described in this deliverable including establishment of final architecture and
integration of it to the industrial environment as well as reporting the revised KPIs related
to each business scenario leveraging on RE4DY reference architecture. In section 4 the
outputs of task 5.4 has been depicted introducing the POLIMI perfarmance monitoring
methodology and its two iterations and insights of the pilots on project concepts and

reference architecture.

Relationships among other deliverables

This deliverable is closely related to D5.2 “Scale up & on-site validation & revised KPI
assessment: Process Operations” and its related deliverables in WP2 and WP3 of the
project. In addition, this document is well connected with D4.3 of WP4 titled “Industrial pilot
area validation & pilot benchmark and KPIs_process engineering” and some are of the

section are closely aligned.
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? Pilot 3: GF Fraisa

General Introduction

The GF Fraisa pilot implements services for virtual machining preparation, tool lifetime and
machine maintenance management as well as part quality control and overall
optimisation for the case of milling technologies. The pilot is centred on the machine and
tools, but as the scenario is deployed across the tool and machine lifecycle for high
productivity and high precision applications, business process related to virtual planning
and adaptive manufacturing and quality control are included. The challenges addressed
are the following:

1. Selection of best tools for a given part manufacturing, with virtual simulation of
manufacturing KPIs

2. Individual tool lifecycle management with Al prediction of tool wear for optimized
tool recycling

3. Predictive maintenance of key machine components for guaranteeing high
precision and maximize uptimes

4. On machine quality control of manufactured parts for adaptive manufacturing

Those challenges are associated with the corresponding business processes (BP):
BP1 - Process Planning and Preparation

e (Objective: Tool information available with CAM and machine conditions for process
planning & simulation.
e Benefit: Selection of best toals and strategies for optimized machining processes.

BP2 - Tool Management and recycling

e Objective: Tool data integration for machine operation and Monitoring of tool status
and timed recovery and refurbishing of tools with predictive solutions.
e Benefit:increased recycling and timely refurbishing of tools via predictive insights

BP3 - Machine Maintenance

e (Objective: Maintenance of critical machine components.
e Benefit: Monitoring of component status and timed warning, repairing or
refurbishing process with predictive solutions.

BP4 - Adaptive Digital Manufacturing

e (Objective: Machine Verification using metrology and advanced part alignment.
e Benefit: Automated in-machine metrology and feedback.

Horizon Europe Grant Agreement ID: 101058584
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The following picture (Figure 1) represents the architecture of the pilot for all the business
processes, requiring specific modules related to federated learning FEDMA and FPdM as
specific application for predictive maintenance.
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& ] RE4DY Toolkit component 28 Analysis Center

Figure 1 - General architecture of GF pilot showing the RE4ADY toolkit elements deployed across four
business processes

The Data Container

A central achievement of the pilot was its ability to bridge and connect previously isolated
data silos, solutions, and processes across the machine tool ecosystem. The core
motivation behind this effort is simple: by bringing data from multiple sources into a unified
environment, stakeholders can unlock new types of value-added services that would be
impassible ta implement in isolation. For example, the work done by Atlantis and Core
demonstrates haow combining machining and tool data enables advanced predictions
about toal and machine condition.

Rather than functioning as a traditional data container in the strict sense, the solution
developed acts more as a data aggregation and orchestration layer. Its design is flexible,
data storage and access can be adapted based on the specific requirements of a use
case, whether that involves a data connector, a container, or a marketplace interface.

In the current setup, its primary role is to interface with various data sources: reaching
edge devices on machines to extract operational data, identifying which tools were used
via integrated solutions, retrieving corresponding part file information, and finally
aggregating metrology and quality control data at the end of the process. This
comprehensive aggregation enables researchers to conduct end-to-end analysis: for
example, examining how specific process conditions influence tool wear, and how that
wear, in turn, affects final part tolerances.

This halistic view, from engineering through to quality control, is the key value of the
system, enabling full traceability and insight across the production process. Looking

Horizon Europe Grant Agreement ID: 101058584
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ahead, it would be valuable to expand this scope further by incorporating lifecycle data of
the product post-factory or during its return, closing the loop for circular manufacturing.

2.a Business Scenario 1:

This business scenario focuses on the virtual preparation of the machining process,
integrating the Fraisa ToolExpert application in the NX CAD CAM for the best choice of the
tool configuration given a 3D model specification, and the virtual manufacturing of the part,
which helps to avoid collisions and verify if the full program is consistent with the
requirements prior ta machining.

2.a.1 Full-scale implementation
ToolExpert integrated in Siemens CAM NX

FRAISA ToolExpert is now seamlessly integrated into Siemens CAM NX as shown in Figure 2.
Initially, users could transfer tool geometry data with just a few clicks — now, cutting data can be
transferred just as easily. The FRAISA ToolExpert is now an integrated vendor in the Cloud Connect Tool
Manager in Siemens NX.

@ SIEMENS
&

L

. FRAISA ToolExpert®

i

) ~ Milling cutter Drills
&

J

@

=

8

o
FRAISA ToolExpert® AX-FPS
N
@ st RASA Tookxpert® AXFPS

Figure 2 - ToolExpert integrated in Siemens NX

Once the tool is chosen the geometrical tool data can be sent to the CAM with one button
as can be seen in Figure 3.
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Figure 3 - Geometrical data send to NX Tool Only Product Data

If the warkpiece material and milling strategy are chosen as well, the recommended
cutting data can be sent to the CAM as well (Figure 4).

1 Clowd Connect Werkseugmanager X

o Cloud Connect Tool Manager SIEMENS

Fraisa Tool Expert

Browse tools on the Fraiss website Description Orderret. Dismeterof the cutting ~ Length Coating
cdge
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Cutting data

= Dy maciolg )+ = =
i —— 8 a

Add another application
Selected material
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Nurmbesof cuting edges . s
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Extemal dameter of e iled hole oA ol - 28
ekt a new sgplcation, mateial ot tool sl
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Cutting speed " Imimin] s
Feed per ooth O 008
Spindle speed n 3846
feed tte of the centering path v m
Peaerston angle ofth centering path w " 15

Figure 4 - Cutting data Send to NX Tool

When the tool is sent ta the CAM tool-library, the package (tool geometry data and cutting
data) can be transferred to the NX jobs. The tool in the tool-library is shown in Figure 5.

Horizon Europe Grant Agreement ID: 101058584
Page 14 of 141




R E4 DY D5.3. Industrial pilot area validation

MANUFACTURING DATA NETWORKS & pilot benchmark and KPIs_Process Operations

@ Cloud Connect-Werkzeugmanager X ] Discovery Center

o Cloud Connect Tool Manager

TO

84 2.3 HDC_HPC-HFC Strategiekombinationen_setup_1.prt(}) (7

> END_MILL_NON_IN (ABLE Fraisa_P8405501

e [ Sendtooito X

End Mill (non indexable) ¥

7 (Libref : P8405501 ()

g
s Milling -
v

——

Fraisa_P8405501 aee
Description: P3405501 Cylindrical/Sq...
D:12 | R1: 02 | FL: 27 | L: 33.29 | Flutes:
5 O s

[T ouplicate

Figure 5 - Transfer tool geometry data and cutting data to NX jobs

Afterwards, the tool with the exact geometrical data and the recommended cutting data is

in the Operations Navigator from NX (Figure B).

CMOeEBsZE@FD

o

Figure 6 - Geometrical data and cutting data in Operations Navigator

In the example of the RE4DY drone component, four toals with geometry and cutting data
must be integrated into the CAM system. Thanks to the integrated ToolExpert, this can be
done quickly and reliably.

Virtual Environment

As illustrated in Figure 7, virtual simulation, conducted within the Run MyVirtual Machine or
Create MyVirtual Machine software environments, integrates the designed workpiece
geometry, the specified cutting tool from Fraisa's ToolExpert, and the CAM-generated NC
program. This simulation provides crucial insights into the projected machining duration,
considering the chosen tooling and the defined preparation strategy. Furthermare, it
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enables the identification of potential kinematic interferences or collisions between the
tool, the workpiece, and the machine tool housing, thereby enhancing process planning
and mitigating risks

SIEMENS  Create MyVirtual Machine x
g+ (2% 0B | O ® ® &
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Figure 7 - Milling simulation in Create MyVirtual Machine

Moreaver, Figure 8 demonstrates that the energy consumption required for processing
work piece can be assessed within the simulated manufacturing environments of Create
MyVirtual Machine or Run MyVirtual Machine.
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Figure 8 - Trace of energy consumption in Create MyVirtual Machine
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Za.llArchitecture

Figure S illustrates the architecture for the virtual commissioning of a part. This framework
integrates the Fraisa ToolExpert within the CAD/CAM software environment, enabling
precise tool selection for manufacturing processes. The defined machining operations are
subsequently simulated using Siemens Run MyVirtual Machine.
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Software Siemens Software Tools XY.
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Tool Wear
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Figure 9 - Architecture for Virtual commissioning

2a.l2Applications
ToolExpert

The FRAISA ToolExpert is a digital tool designed to quickly and accurately determine
cutting data for FRAISA toaols. It supports various machining processes such as milling,
drilling, and trochoidal machining by calculating optimal parameters like cutting speed,
feed rate, step-over, and spindle speed based aon the selected material, tool type,
machining strategy, and machine setup.

With an intuitive user interface and a comprehensive database of materials and tools, the
ToolExpert helps improve efficiency, reduce tool wear, and optimize process times. The
generated data can be seamlessly integrated into CAM systems like Siemens NX, making
it an ideal solution for madern, high-performance manufacturing environments.

Run MyVirtual Machine

Siemens Run MyVirtual Machine is a comprehensive software solution designed to
accurately simulate the entire machining process on a virtual representation of a CNC
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machine. It supports the validation of Numerical Control (NC) programs and machine
kinematics by calculating critical performance indicators such as estimated machining
time, energy consumption, and potential tool wear, based on the loaded NC code, machine
canfiguration, and part geametry.

With its ability to precisely replicate real-world machine behavior, Run MyVirtual Machine
helps identify and prevent potential collisions, programming errors, and inefficient
movements before any physical material is cut. This robust virtual environment allows for
the thorough evaluation and optimization of machining strategies, significantly improving
efficiency, reducing costly physical prototypes, and minimizing machine downtime. This
virtual validation process benefits from precise tool and cutting data selection, such as
those provided by Fraisa's ToolExpert within CAM systems like Siemens NX, creating a
holistic digital workflow from design to validated production.

2.a.1.3 Key challenges and solutions for full-scale implementation

In the future, the customer should no longer have to manually specify the material, as it
should already be defined upan importing the CAD file. The milling strategy, along with
suitable cutting parameters, should also be automatically suggested based on the part or
the specific area to be machined. To enable this, the CAD model must be equipped with the
corresponding macros.

The milling strategy should be optimally determined based on conditions such as the part
material, pocket depth, pocket size, pocket corners, the milling machine, and the available
tools (whether new or already showing wear). Currently, CAD features are either not
recognized at all or only partially. Tool suggestions are made solely based on the material
to be machined, while the strategy still has to be selected manually.

To automate this process, algorithms are missing that can determine the appropriate
strategy and parameters based on the above-mentioned features.

2.a.2 Industrial trials of the pilot

2.a.2 ] Testing procedure and Barriers

This section describes the testing procedure and technical activities undertaken to
implement the proposed use case, focusing on the integration of Fraisa's ToolExpert with
Siemens NX and Siemens' virtual manufacturing environments. Furthermore, it addresses
the specific barriers encountered during these tests on industrial equipment and pilot
setups, along with the measures adopted to mitigate them or improve the expected output.

e CAD Model Creation: The initial phase involved the design of the drone cover
within Siemens NX. This CAD model served as the foundational element for
subsequent manufacturing simulations. Detailed geometric modeling was
performed to accurately represent the workpiece.

e Virtual Environment Configuration: A critical step was the configuration of the
virtual manufacturing environment. This necessitated the creation of a digital twin
of the target machine tool, specifically the GF MillP8OOUS, within Create MyVirtual
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Machine. This digital representation served as the platform for integrating the
generated NC code and the tool definitions.

e Tool Data Integration: Tools selected for the machining process were sourced
from Fraisa's ToolExpert database. These tool definitions, including their
geometries and cutting parameters, were subsequently integrated into the virtual
environment.

e NC Code Generation and Simulation: Following the toalintegration, NC code was
generated based on the designed workpiece and selected tools. Simulations were
then conducted with this NC code in Create MyVirtual Machine (for setup and
programming verification) and Run MyVirtual Machine (for real-time simulation and
optimization). This facilitated the validation of the machining process, assessment
of machining duration, and identification of potential collisions. During the
implementation and testing phases, several technical and logistical barriers were
encountered.

e Software Licensing Barrier: Key software components, including Siemens NX,
Create MyVirtual Machine, and Run MyVirtual Machine, are proprietary, license-
based solutions that require on-premises installation. This necessitated
significant lead time for procurement, license management, and IT infrastructure
setup.

e Digital Twin Creation and Validation Barrier: The accurate representation of
the physical GF MillPBOBUS machine tool as a digital twin within Create MyVirtual
Machine was a crucial task for setting up the virtual environment. This involved
meticulous geometric modeling, kinematic definition, and ensuring accurate
correspondence with the physical machine's behavior. Any inaccuracies in the
digital twin could compromise the reliability of simulation results.

2.a.22 Configure to order process

This section outlines a Configure to Order process for drane manufacturing, integrating
various digital tools and platforms to streamline the workflow from customer configuration
to virtual production. The process is designed to ensure consistency and data flow across
different stages, as illustrated in the provided Figure 10.
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Figure 10 - Configure to order process

The integrated process can be broken down into the following key steps:

e Web shop configurator: A customer initiates the process by configuring a drone
within a web shop interface. This configuration includes selecting drone-specific
components and defining custom text for engraving on the drone cover.

e Data Transmission to Data Integration Layer: Information regarding the
configured drone and the engraving text is transmitted to a central data integration
layer, specifically Siemens Insights Hub. Data exchange at this stage occurs
through JSON files, ensuring a standardized and efficient transfer of information.

e Master Data Record Creation: Upon receiving the configuration data, Siemens
Insights Hub creates a unique master data record. This record is assigned a unique
identification number and contains all pertinent drone configuration details.

e Product Lifecycle Management (PLM) Integration: The engraving text and other
relevant configuration details are then sent to a Product Lifecycle Management
(PLM) system, Siemens Teamcenter. Within Teamcenter, a new Engineering Bill of
Materials (EBOM) is derived, incorporating all related specifications for the
customized drone and its cover.

e Real-Time Digital Twin: Relevant infarmation, including the updated EBOM and
CAD data output, is sent back to the data integration layer as a change notification.
Concurrently, this information is also transmitted to a Real-Time Digital Twin madel
that represents the virtual manufacturing environment. This digital twin, which
incorporates tools like Run MyVirtual Machine, virtually produces the drone cover
with the specified engraved text. Crucially, this virtual manufacturing process
allows for the extraction of valuable data, such as energy consumption and
processing time, providing insights into the efficiency and feasibility of the
production.

2.a.3 Final KPls maonitoring and validation

2a8.5.1/ndustrial Outcomes and Lessons Learned

The FRAISA ToolExpert is fully integrated into Siemens NX CAM software. This allows
customers to select the appropriate FRAISA tool directly within CAM and seamlessly
transfer the carresponding geometry and cutting data quickly and without errors. As a
result, careless mistakes are avoided, saving customers both time and resources.

28352 KPl Measurement and Performance Evaluation
Table 1 - KPIs identified for BP1

BUSINESS
Indicators DESCRIPTION Expect.
- Expected
ID | List the Business | Give @ detailed Unit* Imtla[ MSF final Date of
objectives description of vatue | Value Value achieve
expected for the the indicators ment**
Business
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Scenario/Use
Case
Time to
Operator takes select
the right tool tool
1 | Tool selection ° rgnt oo o0 50 |10 2 2028
and chooses the | and
right strategy strateg
y (min)
) Transfer )
ToolExpertin geometrical tool failures
CAM : (%) 9 9 9
2 data and cutting 20% 2% 2% 2025
data to CAM
100%
Virtual Programming/se | Progra [bas[:e
3 environment for t—.uptime of work [ mming/ line 80% 30% 5028
tool and pieces can be set-up 120
trat timized ti %
strategy optimize ime (%) min)
Estimated
. energd 180%
Virtual consumption Energy (base
4 environment for can. bg congu line 80% 50% 5028
energy optimized based | mption 80
optimization on tool selection | (%)
. KW)
and milling
strategy

2.a8.3.3 Final KPl Assessment and Business Impact

Tool selection: Once the KPI tool selection is implemented, FRAISA customers will always
use the right tool with the correct cutting data. This strengthens application support and
custaomer loyalty.

ToolExpert in CAM: Largely already implemented. FRAISA thus strengthens customer
relationships by enabling NX CAM users to integrate tools more quickly, saving both time
and resources.

Virtual environment for tool and strategy: With this KPI, customers reduce setup times,
allowing machines to resume production faster and operate more productively.

Virtual environment for energy optimization: Optimally applied tools and strategies
reduce customers’ energy consumption, enabling them to operate more economically.
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2.b Business Scenario 2:

The second business scenario focuses on the tool lifetime, gathering relevant data from
the machine and using Al models for predicting the wear of tools. The approach benefits
from the federative learning methaod, collecting data from different machines and
aggregating this data for improving the Al models and predictions. Two types of Al
applications have been developed by the partners CORE and Atlantis.

2.b.1Full-scale implementation

2b.1.1Architecture
Atlantis Federated Predictive Maintenance (FPdM)

The architecture specifically designed for GF Pilot is illustrated in Figure 11. In this section,
components developed by Atlantis for the federated learning objectives are coloured in
orange, to provide more clarity of the system's architecture. The Federated Predictive
Maintenance (FPdM), corresponds to components number four of the Reference
Architecture. The designed system supports two basic workflows:

e Training a model in a federated learning environment
e Performing inference using the trained model on input data

These two waorkflows have been developing simultaneously during the trials, constantly
fine-tuning and improving.
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Figure 11 - FPdM architecture

A more detailed view of the federated learning-specific architecture is presented in Figure
12. This schema is adapted from the official Flower documentation, with additional
modifications to incorporate a custom Flask Server developed for this use case’s
requirements.
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Figure 12 - FPdM Server & Client services

Details for the designed components are described below, as fetched and furtherly
enhanced from the official Flower documentation”

e FPdM Server (Orchestrator): Thiscomponent plays a central role in managing
the federated learning process. It handles communication with the
participating Clients, orchestrates training rounds, and aggregates metadata
received from each client. Based on literature, it should be deployed in a
centralized machine that is accessible from all machines that will participate
in the federated learning process. The FPdM Server runs two main services:

o Superlink: This service, included in the Flower federated learning
framework, is a long running process that forwards task instructions to
Clients and receives task results back. For enhanced security and
reduced risks, this service can be configured to accept only Clients that
presenting specific SSL (Secure Sockets Layer) certificates during the
Client-Server handshake process. Communication between Superlink
and any other service (e.g. Serverapp, Supernode] is achieved over
gRPC channels.
o Serverapp: Thisis a short-lived process with RE4DY-specific code that
customizes all Server-side aspects of federated learning systems
(client selection, client configuration, minimum required Clients, result
aggregation). From this service, the Al engineers can customize, modify
or extend the aggregation methods to meet use-case-specific goal.
The Superlink image can be simply pulled from Flower Docker registry while the Serverapp
image, that has been designed and built specifically for the RE4DY project, is hosted in the
Atlantis repositary and can be accessed upon request. Both services can be deployed
using Atlantis-provided Docker Compose files, documentation and deployment scripts
designed for smooth installation and easy deployment.

e FPdM Client: The FPdM Client is a suite of services designed to run on the edge
of milling machines. It consists of the following services:

"https://flower.ai/docs/framework/explanation-flower-architecture.html
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o Supernode: This service, included in the flower federated learning
framework, is a long-running process that connects to the Superlink, asks
for tasks, executes tasks and returns task results back to the Superlink

o Clientapp: This is a short-lived process with project specific code that
customizes all client-side aspects of federated learning systems. From
this service, developers and Al engineers can define custom data
preprocessing methods, specific machine learning models, evaluation and
fit functions, and postprocessing methods. This service hosts the custom
model that was designed and developed for GF Pilot's use-case. The
transmission of any metadata generated by Clientapp to the FPdM Server
is achieved via Supernode-Superlink communication

On the client site, a Flask Server is deployed to facilitate external interactions through AP
calls. Developed after GF technical team’s instructions, the following endpoints are
available
[start-training: Accepts POST requests to initiate and trigger a federated
learning session. Upon receiving request, the short-lived Clientapp
process is launched using the defined parametrization. The Clientapp
process will terminate when all training rounds are completed. The current
approach allows dynamic client participation, allowing Clients to join the
federation even after training has started. It should be noted that the POST
request to the /start-training endpoint, must include milling job names
and tags in its body to determine the jobs whose data will be used as
training data for the model.

Request Payload Example
[{

"JobId": "3b379f00-132f-4989-85cb-fb9cdf0fal5a",

"JobName": "2025-05-12T00:00:00.000Z Test Job 1",

"StartTime": "2025-05-12T00:00:00.000Z ",

"EndTime": "2025-05-12T700:01:00.000Z2 ",

"Tags": [

"100000000000",
"Material 1",

"ap 0.0",

"ae 0.0",
"Article Type 1",
"Vb 0.02",

"Vbmax 0.00"

1,

"Operations": |
"la21858e-7ba2-40f4-a7ce-ec7a05£fc90eb",
"0d016e93-9089-4b90-b367-f7ddaleb629f",
"85026ce5-c6bb-4bcl-beb6f-0e1619£3d4cO",

]

"JobId": "71fdb5ea-5480-4e0d-9f3d-1fa7cd68bcdd",
"JobName": "2025-05-12T00:01:30.000Z Test Job 2",
"StartTime": "2025-05-12T00:01:30.000Z ",
"EndTime": "2025-05-12T00:02:00.000z2 ",

Horizon Europe Grant Agreement ID: 101058584
Page 24 of 141




R E4 DY D5.3. Industrial pilot area validation

MANUFACTURING DATA NETWORKS & pilot benchmark and KPIs_Process Operations

"Tags": [
"100000000001",
"Material 1",

"ap 0.0",

"ae 0.0",
"Article Type 1",
"Vb 0.025",
"Vbmax 0.00"

1,

"Operations": [
"e6cdfff08-205¢c-4b90-b00d-35alcb6d1048",
"73568d57-5983-4fcb-8bad-1822a22e5blo"

]
]

Response Example
{
“job_ id”: “038ae0e4-3595-4cd6-9d40-
lcb3d1136920”7,
“message”: “Training started successfully.”.
“status”: “success”
}
/perform-inference: Accepts GET requests and returns the inference made
by the trained model. When a GET request arrives, the trained model will be
called with the data included in the request given as inputs. The inference
result will be returned after the successful data preprocessing and model
execution.
Request Payload Example
{
“JobNames” :
["2025-05-12T00:00:00.000Z Test Job 1",
"2025-05-12T00:01:30.000Z Test Job 2"]
}
Response Example
{
"message": "Inference completed successfully.",
"results": [
{
"JobName": "2025-05-12T00:00:00.000Z Test

Job 1",
"RUL": 0.6365838646888733,
"Vb": 0.12731677293777466,
"timestamp": "2025-05-12 08:40:33"
by
{
"JobName": "2025-05-12T00:00:00.000Z Test
Job 2",

"RUL": 0.4732838646888733,
"Vb": 0.094657729377746¢6,
"timestamp": "2025-05-12 08:40:33"

Horizon Europe Grant Agreement ID: 101058584
Page 25 of 141




R E4 DY D5.3. Industrial pilot area validation

MANUFACTURING DATA NETWORKS & pilot benchmark and KPIs_Process Operations

Visualization: To facilitate the visualization of inference results, a dedicated component
was developed that allows users to log in and view the latest outcomes for their respective
tools. This functionality is implemented using Grafana? an open-source platform known
for its rich visualization capabilities. After deploying a Grafana instance, a straightforward
dashboard was configured, illustrated in Figure 3 and Figure 4. The user can select whether
they want to view the dashboard for a single milling tool or for multiple tools
simultaneously.

The FEDMA system is designed to enable Federated Learning (FL) in industrial
environments while preserving data privacy. It ensures that raw machining data remains
at the edge device on FRAISA premises, while the GF Cloud handles model aggregation
and orchestration. Aweb-based Ul developed by CORE provides user interaction via GF's
RE4DY API.

At the edge, the Job Recorder collects sensor data and metadata during machining jobs,
storing them in structured folders (CSV + JSON). The FEDMA Client, developed using
FastAPl, exposes RESTful endpoints (/perform-training and /perform-inference)to process
these jobs. In a training workflow, the client loads locally labeled data, trains a model, and
sends updated weights via gRPC to the FEDMA Server, built with the Flower framewaork. It
then receives and stores the new global model. In inference, the client uses the latest
model to predict tool wear and RUL, returning results to the cloud.

The GF Cloud hosts three main components. The Process Inspector receives metadata
and human-provided wear labels (Vb, Vbmax). The RE4DY Service serves as an
orchestration API, triggering model training/inference at the edge via HTTP. It aggregates
predictions and returns them to the user-facing dashboard. The FEDMA Server
aggregates updates from all clients (currently one), maintaining the global model using
Flower's built-in coordination logic.

Since edge devices are on a secured network, the RE4DY Service acts as an intermediary,
relaying APl calls to the edge. The Ul, hosted by CORE, interacts anly with RE4DY, enabling
users to trigger jobs and view results. This three-tiered structure—edge, cloud, Ul—
enables a secure, scalable, and privacy-preserving federated learning workflow.

2 https://grafana.com/
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Figure 13 - Federated Maintenance for Milling Machines (FEDMA)

To integrate FEDMA into the GF Cloud, CORE first containerized the FEDMA Client and
FEDMA Server, pushed them to GF's Azure registry, and provided deployment guides.
Using Docker Compose, GF deployed the components: the server in the cloud, and the
client on the FRAISA edge machine with proper volume and network setup.

The FEDMA Server was configured to listen for incoming gRPC connections, while the
FEDMA Client was prepared to expose REST endpoints and participate in FL rounds. TLS
was enabled for secure communication.

Next, integration testing was conducted. The RE4DY Service (developed by GF)
successfully triggered training and inference operations via API calls to the FEDMA Client.
The system was verified end to end: local training was initiated, model updates were
aggregated by the server, and inference results were returned and visualized.

Since direct access to the edge was not permitted, GF's RE4DY APl handled all
communication. CORE also developed a Ul that interacts solely with RE4DY, abstracting the
complexity of the edge operations and allowing users to trigger jobs, view predictions, and
input wear labels. This architecture respects security boundaries while enabling robust
interaction and federated learning capabilities.

2b.1.2A Models

2.b.1.2.1 FPdM (No 4) Model

The second stage of the workflow focuses on the development and deployment of an
artificial-intelligence-based system for predictive manitoring of tool health and wear.
For this purpose, a feed-forward neural network (FNN) architecture was conceived, trained,
andimplementedto address the specific requirements of tool-wear estimation. The design
process was guided by both the operational context of the machining environment and
the availability of relevant data streams. Two principal categories of input data feed the
model:

e Dynamic sensarial measurements, continuously collected and transmitted
through the MyRConnect infrastructure. These high-frequency signals capture the
real operating conditions of the machine and include, among others, spindle
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speed, spindle vibration, spindle load, and curve abscissa. Such parameters are
directly related to the physical stresses experienced by the cutting tool and
therefore provide essential information for characterising wear mechanisms.

e Static job-related information, describing the machining task as planned and
executed. This set comprises features such as total job duration, number of
operations, and cutting strategy parameters (for example axial and radial infeed
depths). These variables reflect the overall workload imposed on the tool and
complement the time-series signals from the sensors.

The neural network is trained to perform a regression task, with the prediction target
derived from a fusion of the V_b and V_bmax fields. These fields contain direct
measurements of tool wear expressed in millimetres and are considered reliable
indicators of the tool's degradation state. By learning the relationship between the
combined input features and these wear measurements, the model outputs a continuous
estimate of the expected tool wear at the end of a machining job. To convert this raw
regression output into a more actionable indicator, the predicted wear value is
subsequently compared to user-defined thresholds established by domain specialists.
This post-processing step enables the computation of a Remaining Useful Lifetime
(RUL) percentage, which quantifies how much of the tool's service life remains before it
reaches a critical wear limit. Such an approach provides operators and maintenance
planners with an interpretable, real-time metric that can support proactive decision-
making, reduce unplanned downtime, and extend overall tool longevity.

2.b.122 FEDMA Al Models: Federated Maintenance for Milling
Machines (CORE) Al Models

At the core of the FEDMA service there is a Deep Learning (DL) model developed to
estimate the Remaining Useful Life (RUL) of milling tools. This model enables
manufacturers to maximize tool usage, reduce unplanned downtime, prevent failures, and
improve equipment reliability.

The model is specifically trained to predict tool wear, using data collected from FRAISA’s
milling tool experiments and metadata from My rConnect. It leverages both
experimental and real-world operational data, including:

e Sensar values: temperature, vibration, cutting forces, etc.

e Machining parameters: axial depth (ap), radial depth (ae), machining strategies

e Tool metadata: article number, capturing the geometry and specification of each
tool

e Material properties: such as the type and grade (e.g., M 1.2738 HH)

Wear labels used for supervision:
e Vb:mean wear

L4 Vbmax: maximum wear

In addition to predicting wear (Vb and Vbmax), the system includes a dedicated RUL
estimation algorithm. This algorithm calculates the Remaining Useful Life based on:
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e The predicted wear values
e The duration the tool has already been in use
e Thetool's geometry and design, inferred from its article number

The modelis further improved through a Federated Learning approach, which allows it to
caontinuously learn from new experiments across distributed environments—without
centralized data collection—ensuring privacy and scalability.

Aninference script integrates the model into operational workflows. Upon receiving a job
identifier, the system provides operators with:

e Predicted Vb (mean wear)
e Predicted Vbmax (maximum wear)
e Estimated RUL (remaining useful life)

This allows real-time, data-driven decision-making to optimize tool replacement cycles
and improve process efficiency.

2b.1.3 Applications

The FPdM component is equipped with a high-level user interface that facilitates the
interaction with the system and allows users ta execute all supported functionalities in an
intuitive manner. The interface has been carefully designed to balance analytics
visualization and operational actions, providing both insight into tool health and the ability
to trigger relevant processes directly from the panel. The interface displayed in the
following figure can be conceptually divided into twa main sections: the Analytics Section
and the Actions Section.

© Operations
Analytics Dashboard

0'\

Figure 14 - FPdM User Interface
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Located on the right-hand side of the interface, the analytics section hosts a
comprehensive dashboard presenting the results of any inferences that have been
performed for tools participating in milling jobs. The dashboard is fully interactive,
enabling users to select specific tools and define time windows of interest to focus their
analysis.

For each selected tool, the dashboard presents four distinct panels arranged
horizontally:

Current Health Status Panel: The first panel displays the most recent inference for the tool,
reflecting its current health condition. The tool status is visually encoded using a calour
scheme, where green indicates low wear, yellow indicates moderate wear, and red
carresponds to high wear. This immediate visual feedback allows operators to quickly
identify tools that may require attention.

Wear Prediction Panel: The second panel presents the latest wear prediction in millimetres,
again using the same colour coding for consistency and quick interpretation. This
guantitative metric complements the health status panel by providing precise values for
planning maintenance or replacement.

Histarical Inference Panel: The third panel contains a table of all historical inferences for
the selected tool, enabling users to trace past predictions, monitor trends, and validate
model performance over time.

Wear Evolution Graph: The fourth and final panel visualizes the evolution of tool wear over
time. This graph allows users to observe progressive degradation patterns, detect
anomalies, and correlate tool performance with operational conditions or job

characteristics.

Figure 15 - Analytics section with the designed panels zoomed in for a selected tool

Located on the left-hand side of the interface, the actions section provides interactive
fields and buttons that allow the user to execute specific operations. Users can initiate
inference for a particular job, by selecting the desired job from the available jobs shown in
the list or trigger a federated learning process to update the model with selected jobs
forming the training corpus.

Horizon Europe Grant Agreement 1D 101058384
Page 30 of 141




R E4 DY D5.3. Industrial pilot area validation

MANUFACTURING DATA NETWORKS & pilot benchmark and KPIs_Process Operations

@ Training

¥ Operations

Select jobs to train the model:

2025-08-08T06:1... =  2025-08-08T06:3... x

Al 2 jobs selected

= Prediction
jab for prediction:

sen_a00mm.h

B Selected: 2025-07-11T0%08:09.160: 5_Fasen_400mm.h
Figure 17 - Select jobs and start training action
»

Training

2% bo train the model:

Figure 16 - Select jobs and perform tool wear
inference action

By combining both analytics and operational controls within a single interface, FPdM
enables a seamless workflow where maonitoring, prediction, and model training are tightly
integrated. This design ensures that users can not only observe tool health trends but
also act proactively, supporting informed decision-making and efficient maintenance
planning.

To support real-time decision-making and ensure efficient use of machining resources,
CORE has developed an intuitive user interface as part of the FEDMA service. This
interface enables operators to interact directly with the federated learning system,
providing full control over training schedules and inference execution. By aligning with
production workflows, the system empaowers users to make data-driven decisions while
maintaining operational efficiency and data privacy.
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Training Inference

Federated Learning Training ediction & Insights

Figure 18 - FEDMA User Interface

Key Functionalities:
1. Controlled Model Training

The interface of Figure 19 allows operators to initiate madel training at appropriate
times, giving them full control over when training tasks are executed. This ensures that
training can be scheduled without disrupting ongoing production and allows optimal

use of available resources.

Run Training
Startthe model training process.

[ mun i

=

Running training process...

‘ Please wait while we train the model

Training.. 90%

Figure 19 - Initiate FEDMA Model Training through U/

2. Inference Execution for Job-specific Prediction

Through the Ul of Figure 20, operators can initiate inference by selecting edge where
jobs were executed. This enables users to run predictions on actual completed
operations, ensuring that the analysis is both relevant and accurate for the selected

context.
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(*) Run New Inference

Select an edge and run a new inference analysis.

SelectEdge:

Select an edge| v

Select an edge
Edgel

Edge2

Figure 20 - Initiate FEDMA Inference

Once the inference is executed locally on the edge device, the system generates job-
specific predictions, including Vb, Vbmax and RUL estimation, as depicted in Figure 21

Al Insights: Select a Job

et Job Name Manuafy

Or Select from List

| 2024-11-19712:41:03.2802 Main_250.] =

Choose Job Name from Lst:

Predicted values for '2024-11-19T12:41:03.280Z Main_250.h'

Remaining Useful Life of selected tool

RUL:S0%

Mean Predicted Wear (Vb) Highest Predicted Wear (Vbmax)
0.01 mm 0.01 mm

Figure 21 - FEDMA job-specific results

3. User Validation for Continuous Learning

After inference, users can fill in actual wear measurements along with the unique tool
ID, as per Figure 22. This feedback loop serves multiple purposes:

o Improves future wear and RUL predictions

o Enhances historical tool tracking and insights

o Supports the model's retraining pipeline within the federated learning
framework
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Article Number p12345.
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Figure 22 - FEDMA Validation Step
4. Tool Insights and Historical Visualization
After In the Toaol Insights section, users can:

o Select a specific tool using its unique identifier
o View wear predictions and RUL estimates from past operations
o Explore wear history through interactive visual plots

FEDMA, through its federated learning approach, depicted in Figure 23, advanced Al
models, and user-friendly interface, aims to maximize tool usage, reduce downtime,
prevent malfunctions, and enhance equipment robustness—all while respecting data
privacy and security. By empowering aperators with real-time insights and full control over
training and inference, the system delivers a practical and privacy-preserving solution for

predictive maintenance in modern machining environments.
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Figure 23 - FEDMA tool-specific results

2.b.1.4 Key challenges and solutions for full-scale implementation

The current FPdM (Federated Predictive Maintenance) implementation has successfully
demonstrated the feasibility of federated learning by supporting two participating milling
machines. However, scaling up to a deployment across a larger number of machines
introduces several technical challenges that would need to be addressed to ensure
robustness and efficiency.

A primary concern in full-scale implementation is maintaining reliable, low-latency
communication between the FPdM Server and all FPdM Clients. As the number of Clients
grows, the network traffic will increase resulting to higher demands on bandwidth and
synchranization. Unstable or interrupted communication channels may lead to delayed
model updates, failed training rounds or inconsistent participation of Clients.

Another critical challenge in full-scale federated learning deployment is managing the
computational complexity of both Server and client operations. On the Server side, as the
number of participating Clients increases, so does the overhead involved in aggregating
model updates, especially when dealing with large models or short training rounds with
high-frequency updates. This can strain CPU and memory leading to bottlenecks.
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Solutions such as parallel computing or hierarchical aggregation might contribute to
addressing these challenges. On the client side, resource limitations are an equally
important concern. Edge devices typically come with limited computational power and
memory, making it challenging to train complex models. Unlike centralized training
approaches, large-scale edge deployments cannot rely on advanced GPUs or high-
performance CPUs due to increased costs. As a result, training must be optimized to run
efficiently on heterogeneous and resource-constrained hardware. Utilizing adaptive
training techniques, such as limiting the number of local epochs, batching strategies or
compressing models could help align with computational demands and enable a broader
participation of devices in a large-scale deployment.

The full-scale deployment of the FEDMA system presents a range of technical and
operational challenges, particularly within heterogeneous industrial environments. Below
are the key challenges identified, along with the proposed or implemented solutions,
mapped to the core components: Inference, Training, and Federated Learning.

1. Data Integration and Standardization

Challenge:

Ensuring that all required data (sensor operation data, machining parameters, job
metadata, and wear labels) is consistently available and structured across different
CNC machines and edge devices is a significant integration barrier. Variability in
machine software, connectivity protocols, and tag availability introduces risk in system
reliability and scalability.

Solution:

e Standardized data format for inference and training input.
e FEdge devices validate data (and tags) before triggering training or inference.

2. Computational Constraints at the Edge

Challenge:

Edge devices often lack high-performance computing capabilities, limiting the
feasibility of running deep learning models for local training and inference. This is
particularly relevant during federated training rounds, which can require significant
CPU and memory resources.

Solution:

e Optimized model architecture for edge compatibility (e.g., model pruning,
quantization).

e Offer option to operators to start training during machine idle periods,
allowing training tasks to run without disrupting ongoing production and
making efficient use of available resources.

3. Scalability and Maintainahility

Challenge:

As deployments scale to more machines and factories, it becomes challenging to
monitor performance, manage updates, and ensure consistent behavior across
installations.
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Solution:

e Modular software architecture to decouple edge logic, inference, and FL
orchestration.

4. Tool-Specific Intelligence and Wear Modelling

Challenge:

Tool behavior varies by geometry and material, and using a generic model may lead to
poor perfarmance. Accurate wear prediction and RUL estimation depend on tool-
specific behavior and prior usage history.

Solution:

e Use article number as a key input to model tool geometry-specific wear
trends.
e Integrate a dedicated RUL estimation algorithm that considers:
o Predicted wear (Vb and Vbmax)
o Elapsedtoolusage time
o Tool geometry (from article number)

The FEDMA system has demonstrated functional success across core components: wear
prediction, RUL estimation, and federated model improvement. However, scaling to
industrial levels requires careful attention to system integration, computational efficiency,
netwark reliability, and test coverage. The outlined solutions serve as a foundation for
robust deployment and continued evolution in complex manufacturing environments.

2.b.2 Industrial trials of the pilot

2.b.2 1 Testing procedure and Barriers

For the test and data collection at FRAISA, two machines were equipped with GF My
rConnect EDGE boxes, which record process data during milling operations. Each time a
program is started on the milling machine, a new job is created in My rConnect. If a tool
change occurs during the program, a new sub-job is generated. Tags can be assigned to
each job to link additional data. The idea was to use these tags to attach values that are
not automatically recorded—such as workpiece material, unique tool ID, tool article
number, wear land width, etc.

To make this work, only one tool could be used per job (i.e., per program on the milling
machine), because if multiple tools were used, the tags could not be clearly assigned to
the individual milling tools.

One of the My rConnect boxes is installed in the R&D test center, where mainly prototype
or development tools are used. For these tools, storing data makes little sense because
they do not have article numbers, and their geometry data is therefore not stored in the
Data Container. The second My rConnect box was installed on a machine where more jobs
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could be recorded. However, most programs on this machine use multiple tools, which
results in sub-jobs that cannot be uniquely assigned.

Attempts were made to generate more data by running separate programs overnight.
However, due to the additional effort required for programming, setup, and manually
matching the tags, this was only partially successful.

Ideally, tags would be automatically assigned to both jobs and sub-jobs with the start of
the program.

2.b.3 Final KPIs monitoring and validation

2b.3.7/ndustrial Outcomes and Lessons Learned
The outcomes and lessons learnt for this business process and scenario are the following:

e Two applications have been deployed by CORE and ATLANTIS for the prediction of
lifetime of tools as web applications based on data sharing between Fraisa and GF,
using the My rConnect platform.

e The applications use advanced Al models which have been developed through
operations data collection campaigns and labelling by Fraisa experts on two GF
machines

e The models provide already an accuracy on the prediction of residual lifetime of
tools of 80%. It is expected that this accuracy will increase above 90% after
deployment and further training used the Federated learning approach, which
enables the aggregation of models corresponding to different machines and end
user sites, without sharing confidential data. The initial dataset for 1 machine is
nearly 100 Machining files, consisting of 5-10 operations, each file around 10 MB)

e The initial objectives have been therefore attained and are technically ready to
ramp up in accuracy after deployment, which will enable the achievement of the
KPIs related to tooling cost and carbon footprint reduction, delivering a competitive
advantage to Fraisa and GF, and enabling a new business model for tooling in
collaboration with Core and Atlantis.

2 b.3.2 KPl Measurement and Performance Evaluation

The KPIs for this business process are represented in Table 2. They are focused on tooling
cost reduction, enabled by the prediction of lifetime that allows to use the tool closer to
its end of life without risks; associated with the increase of tool lifetime KPI. Additionally,
the knowledge and understanding of tool lifetime for given applications enable the KPI of
better designed tooling and finally the reduction of carbon footprint, which is associated
with the material waste of the tool at end of life. Avoiding tool breakage enable the
recycling of tools 2-3 times.

The previous KPIs are enabled by the accuracy in the prediction of the tool lifetime through
the algorithms and applications developed by Core and Atlantis. Currently this accuracy
is of 83%. This enables a mean gain of nearly 15% in tool lifetime, as the mean residual
lifetime of tools when they are changed by users, compared to maximum lifetime, is
currently 70% and below. This allows to use the tools 15% more time and reduce the costs
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by around 20%. With the usage and deployment of the applications it is expected to reach
a 30% in cost reduction, by extending lifetime by 30%. The rate of recycling of tools will be
also facilitated, and it is expected that the carbon footprint will be reduced by 10% in 2026.
The lifetime of tools is currently being optimised for special applications based on the
knowledge accumulated with the solution, and the increase of this lifetime is of 20%, as
depicted by Table 2.

Table 2 - KPls identified for BPZ2

BUSINESS
Indicators
DESCRIPTION Expect.

List the Business - Expected

ID | objectives Give a detailed Unit* Initial | M18 final Date of
expected for the description of value [Value Value achieve
Business the indicators ment**
Scenario/Use
Case

Due to optimized

Tooling cost application Tool
1 I’eductgion parameters tool |cost [100% |[80% 70% 2025
can stay longer | (€)%
in operation
L tool if | f tool
2 szlgeer ooLite U?anf:‘e Tt e |100% |12a% |130% 2025
. Tool layout is Life
3 ?Oe;iir designed tailored on the time |100% | 100% 120% 2026
J application h (%)
4 Reduc.ed co2 Less energg KW 00% | 100w | a0 oos
footprint consumption (%)

2.b.3.3 Final KPl Assessment and Business Impact

The final KPIs assessment gives out significant business impact for the organisations
involved in the development of this business processes:

e Asmain stakeholder, Fraisa has now a unique solution for adding value to the tools
they manufacture. On one hand they can propose longer lifetimes during usage,
currently 15-20%, and expected to increase up to 30% in 2028 following
improvement of the accuracy of algorithms. On the other hand they decrease
manufacturing costs by recycling efficiently the tools before the break, saving
therefore materials and reducing the carbon footprint of manufacturing.
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e (GF, asmachine manufacturer, has a high value technology offer in partnership with
Fraisa. It is well known that manufacturing costs can be strongly influenced by
tooling costs, in particular in key markets like medtech and aerospace. The
increase of tool lifetime has therefore a direct influence on the cost per part, which
may be reduced by 10% and provide a competitive advantage with respect to
standard tooling systems.

e ForCORE and ATLANTIS, in charge of the development of the prediction algarithms
and application deployment, the success of the project implies the implementation
of a new business model where they can gain benefit from either subscriptions or
licensing of the software, with an initial offer giving already significant value to the
organisations involved and their customers, and a potential for improvement and
greater revenues as the application usage increase and develops with the
partnership.
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2.Cc Business Scenario 3:

The third scenario of the pilot focuses on the machine maintenance, starting from the
machine spindle, the most critical component, and then extending the scope to the rest of
main components subjected to intensive efforts and wear. The resulting applications, VEGA
and Machine Diagnosis, incorporate different types of models. A particular attention was
made to the drive train, for which a detailed ontology was developed, as well as an Al model
for predicting potential failures.

2.c.1 Full-scale implementation

2c. 1.1 Architecture

The architecture of the machine predictive maintenance applications is represented in
Figure 24 and Figure 25. A new acceleration sensor of high resolution has been integrated
into the spindle and integrated in the connectivity framework of the machine through the
EDGE computer and towards My rConnect platform. A visualisation interface, VEGA
monitoring and analytics, was developed for displaying the parameters.

Machine Spindle / e \
TN
3 | ; J VEGA Monitoring
y v ! fy e - )
’ ) = s$3 My rConnect and Analytics

Edge
N )

module
=1 ==
(o)

Figure 24 - VEGA Machine Spindle Monitoring Application Architecture

For extending the application to the other critical components, another application was
developed, Machine Diagnasis. For the specific case of the drive train, an ontology model
was developed by UiO, as well as an Al predictor of potential failures.

A high-level architecture for the Machine care application is represented in Figure 25.
Seven critical components were identified, and specific sensors were deployed on My
rConnect, The application supports dedicated tests in controlled environments and
conditions, where models can provide accurate state of health and predict probahility of
failures, giving then advice to service technicians for maintenance work, as synthetised by
Figure 25.
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Figure 25 - Machine Diagnosis Application Architecture

2c.1.2Al Models

A particular Al model was developed for predicting potential malfunctions or failures for
the drive train of milling machines. The solution is based on data collected during
production and maintenance tests, using the different available sensors on the machine.
A My rConnect application gather this data and a machine learning model was trained
using expert diagnosis knowledge from technicians.

When comparing the accuracy of the predictions with expert labelled data we observe that
the main critical issues were identified, with none of the critical issues disregarded by the
model. This model is also a conservative ane as some events classified as critical by the
model were not cansidered the same level by the experts.

The madel (whose confusion matrix is reported in Figure 28] is therefore maostly accurate
and most importantly does not disregard critical issues and can be used now by technical
experts for automating the control of machines during manufacturing and during
maintenance tests.

Horizon Europe Grant Agreement ID: 101058584
Page 42 of 141




R E4 DY D5.3. Industrial pilot area validation

MANUFACTURING DATA NETWORKS & pilot benchmark and KPIs_Process Operations

+ Confusion Matrix

Confusion Matrix
- 50
2 3
[
E - 40
L
1] g
— =3
s e -30
S| 33 1 0
c E =
m 2
E < -20
3 0 0 8 1o
T
-0

Low Medium High
Predicted Labels(New Model)

Low Critical Critical High Critical
Prediction of the Al model

Figure 26 - Confusion matrix for the resulting predictions of the machine learning model for the
drive train test as compared to the expert labelling

2.c. 1.3 Applications

The monitoring of critical machine components is made by specific applications in the My
rConnect environment. These applications have been developed in two modules; the VEGA
monitoring, for the spindle sensors and status, and the Machine Diagnosis application,
cavering a larger number of critical components of the machine, from the drive train to the
chiller and the hydraulic system.

Figure 27 to Figure 29 show the interface of the VEGA spindle diagnosis application. Figure
27 shows the information aon the spindle status which can be displayed in the interface,
including identification number, axis and motar parameters, operation statistics and main
sensor information in real time.
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Figure 27 - VEGA Spindle diagnosis interface

The application can go into a more detailed statistics and monitoring information about
spindle sensor temperatures, as this is a critical indicator of the quality of the operation
and potential failures with the system. This is represented in Figure 28.
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Figure 28 - VEGA Spindle diagnosis sensor statistics

The application allows to gather information from different machines and spindles, verify
its status and go into a more detailed assessment of each spindle condition (Figure 29).
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Figure 29 - VEGA Spindle diagnosis for different machines and spindles in a shopfloor

In a second step a second application, Machine Diagnosis, has been developed for
cavering a larger number of critical compaonents, including the chillers, the axes, the drive
train, the hydraulic system and different sensors around the machine for monitoring the
environment and mechanics. The application integrates diagnosis algorithms based on
data collection and labelling by experts, which enable to identify potential failures of the
caomponents and the machine, or identify quality issues on the part. The interface of the
application is in Figure 30.
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Figure 30 - Machine Diagnosis Application Interface
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2.c.1.4 Key challenges and solutions for full-scale implementation

The main challenges for the full-scale implementation of the application are related to the
effectiveness of the diagnosis system. The solution needs to be adapted by the customers
by gain their trust and helping them to improve the uptimes and reduce costs of
maintenance of the machine. Although the algorithms reach an accuracy of 80%, the
remained uncertainty can be detrimental to this adaption.

The solution for the challenge is based in a first deployment to be done only at the level
of service technicians. This stage will help to correct and improve the features of the
application and the accuracy of predictions, so to enable the final fulfilment of the KPIs
related to machine uptime and cost reduction. Once this is validated, a second stage will
be implemented for deploying the solution at the level of end user customers.

2.c.2 Industrial trials of the pilot

2.c.2 1 Testing procedure and Barriers
The industrial trials of the pilot are made in the following steps:

e Tests at machine production: The system is part of the production line of the
machine. The different critical components of the machine are tested using the
new applications in order to verify the appropriate assembly and functional
performances of the critical components.

e Tests at service level: The system is tested during installation of the machine and
during maintenance activities of the Service organisation, by specialised
technicians. This phase guarantees performances at installation and supports the
service technicians for diagnosing the machine during maintenance activities at
the customer site.

There are no barriers for these two phases, except the current potential issues for
caonnecting the application, as a webservice, at the customer site. This is a generic
potential issue for the My rConnect platform and its applications, and current procedures
guarantee this deployment for different use cases.

2.c.3 Final KPIs monitoring and validation

2c. 3.1 /ndustrial Outcomes and Lessons Learned

The following outcomes and lessons learned can be drawn from the KPIs evaluation and
monitoring for the Machine Diagnostics application:

e The VEGA Spindle monitoring and Machine Diagnostics applications are currently
being deployed at internal machine production and services levels.

e The applications will be part of a subscription package providing continuous
diagnostics services and preventative maintenance based on the diagnastics
recommendations
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e The subscription packages will provide benefits regarding machine uptime and
maintenance costs with respect to the current service, based on periodic
maintenance and replacement of companents after failure.

e Both machine uptime and maintenance costs are the most critical factors affecting
the production costs of customer parts, and preliminary feedback indicates a great
interest by customer for implementing the packages and solution, which also
influences the buying decision of the customers

e Marketing activities for the solution will be aoriented to the communication of such
unique value proposition, guaranteeing uptimes and minimum costs of
replacements, avoiding unexpected failures and expensive replacement of critical
components.

2c.3.2 KPl Measurement and Performance Evaluation

The KPIs for this business processed are represented in Table 3. There is a modification of
the KPI no. 2, which was previously based on the Remaining Useful Time of key component
before refurbishing, which should be minimised in order to reduce costs. This KPI is rather
difficult to measure so it has been updated to reflect the machine maintenance costs
reduction with the solution as compared to the current preventative situation, having thus
a baseline of @% reduction prior to the installation of the system.

Table 3 - KPIs identified for BP3

BUSINESS
Indicators
DESCRIPTION Expect.
List the Business - Expected
ID | objectives Give a detailed Unit* Initial | M18 final Date of
expected for the | description of value | value value achieve
Business the indicators ment**
Scenario/Use
Case
Productive
machine time
1 Machine Uptime with respect to % 80 % |90% 95% 2026
total available
time
Cost reduction
Maintenance with respect to
2 costs for end standard % 0% 20% 30% 2026
user maintenance
costs

2.c.3.3 Final KPl Assessment and Business Impact

The solution is currently assessed at development and production levels. The first
interesting outcome is the increase of efficiency at production for the control of critical
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components and the identification of potential defects at assembly stages and final
cantrols. There is also valuable feedback from field tests at customer level made by the
company services organisation. In this particular case the estimated gain in machine
uptime is of the order of 10% (from a baseline of 80%). The commercial deployment is
expected to rise the accuracy of the solution and therefore the machine uptime by an
additional 5%, to a maximum expected level of 95% by the customers.

The preliminary feedback of field test customers indicates an improvement as well in the
KPI of cost reduction related to maintenance. The current system is based on periodic
controls and exchange of critical components based on mean time to repair statistics for
each item. This does not take into account the changes in the production system at
customer workshop level. The implementation of the new service, based on a subscription
and continuous manitoring of the components gives now an estimated gain of 20%. During
the deployment at large scale, the expectation is to achieve a cost reduction of 30%. This
KPI will be carefully measured taking into account the histaric costs of maintenance and
replacement of failed components, which represents the most important factor for
services expenses for the customers.
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2.d Business Scenario 4

This business scenario shifts quality control from a post-process activity to a proactive,
in-process system. It focuses on integrating metrology directly into the machine tool to
create a closed-loop feedback mechanism. This enables real-time compensation for
machine geometry and part-setup errors and allows for dynamic adaptation of the
machining program based on in-process measurements, significantly reducing scrap and
ensuring final part precision.

2.d.1 Full-scale implementation

The full-scale implementation of the Adaptive Digital Manufacturing scenario was
conducted within the industrial environment of the Fraisa facility. The setup was centered
around a GF machine tool with a Siemens CNC controller, which was integrated with
an advanced in-machine metrology solution.

Figure 31 - Business Scenario 4 setup

The physical implementation, as shown in Figure 31, consists of a spindle-mounted
touch probe for data acquisition, connected to a dedicated PC running the specialized M3
metrology software, that served as the central edge computing component. It was
responsible faor orchestrating the measurement cycles and processing the data in real-
time. This setup enabled a direct communication link with both the machine's native
Siemens CNC controller for closed-loop actions and with the GF myR-connect cloud
platform for data aggregation and analytics.
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This configuration was designed to validate the complete data flow, from physical
measurement on the machine to the execution of adaptive coarrections and the
subsequent storage of quality data.

2dl1Architecture

The architecture for the Adaptive Digital Manufacturing scenario is designed as a hybrid
system, integrating edge computing components with the machine tool's native controller
and a cloud platform. The solution is centered around the M3 Metrology Software, a key
caomponent of the RE4DY Toolkit, which manages the in-process metrology operations. In
this pilot, the M3 software was deployed on a dedicated PC.

The key compaonents and their interactions are as follows:

e Machine Tool & Sensor: A GF machine tool is equipped with a spindle-mounted
touch probe. This probe is the primary data acquisition device, physically
interacting with the workpiece and machine artifacts, and feeding raw data to the
edge component.

e M3 Metrology Software: The M3 Metrology Software, running on the dedicated
PC in this implementation, orchestrates the measurement routines, processes the
raw data from the probe, and computes the necessary corrections and results.
This software is capable of flexible deployment, potentially on other devices or
directly integrated into advanced CNC controllers.

e (Control-Loop Integration (Machine Level): The M3 Metrology Software
communicates directly with the Siemens machine controller (CNC). It sends
critical data for real-time, closed-loop adjustments:

o Machine Calibration Data: To compensate for geometric errors of the
machine, utilizing an artifact for verification.

o Part Alignment Results: To dynamically adjust the machining program's
coordinate system, correcting the part's setup.

e Analytical-Loop Integration (Platform Level): For monitoring, traceahility, and
higher-level analytics, the M3 Metrology Software sends the final measurement
results in the standardized 1SO 23952:2020 - Quality information framework
(QlIF)format to two destinations:

o The GF myR-connect platform, which serves as the central data
aggregator for the pilot.

o The Siemens contraller, for local data logging and quality verification
purposes.

This architecture effectively enables a closed-loop control system at the machine level
while simultaneously pushing rich, structured quality data to a platform for broader
analysis and process insight.

2.d 12 Applications

The core application utilized in the Adaptive Digital Manufacturing scenario is the M3
Metrology Software from Datapixel (Figure 32), which serves as both the processing
engine and the primary user interface. Deployed on the external Industrial PC, M3 is a
caomprehensive metrology software solution that enables several critical functionalities:
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Figure 32 - Part measurement in the M3 software

e Machine Calibration: The software allows for the verification and calibration of
the machine tool's geometric accuracy using specialized artifacts. This process is
fundamental to compensate for positioning errors and ensure the machine
performs within specifications.

e Part Alignment: M3 is used to measure the exact position and arientation of the
workpiece once it is fixtured on the machine. It then calculates the necessary
coordinate system adjustments to align the theoretical machining program with
the actual part setup, a key step in adaptive manufacturing.

e Measurement Program Development: Engineers use M3 to create and define
complex measurement routines, specifying probe paths, feature definitions, and
analysis parameters.

e Measurement Execution: Operators can initiate and monitor in-process
measurements directly through the M3 interface, ensuring the correct execution
of the defined programs.

e Measurement Simulation: The software provides simulation capabilities,
allowing for the wvalidation of measurement programs offline before their
deployment on the machine, optimizing efficiency and preventing potential
collisions.

e Data Visualization and Analysis: M3 offers tools for visualizing measurement
results, analyzing deviations, and generating reports, which are crucial for
understanding the part's quality and the machine's performance.

While the Siemens CNC controller acts as the recipient of correction data and the myR-
connect platform aggregates QIF results for broader analytics, the M3 Metrology
Software is the direct application interface that facilitates all the key metrological tasks
within the pilot.

2.d 13 Key challenges and solutions for full-scale implementation

Challenge: Limited Industrial Asset Availability

The full-scale testing of the Adaptive Digital Manufacturing scenario was constrained by
the limited availability of the designated industrial asset. The metrology software and
sensor were integrated into a specific GF machine at the Fraisa facility, which was under a
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time-limited lease. This lease expired before the complete test plan could be executed,
posing a significant risk to the pilot's validation activities.

Solution and Mitigation Strategy To mitigate this, a short-term agreement between GF
and Siemens was secured, granting a brief extension. This window was sufficient to
conduct one full round of testing, which successfully demonstrated the core capability of
the architecture: metrology data was correctly extracted from the process and integrated
with other data streams. To complete the pilot's objectives, further validation activities
were carried out using the metrology equipment located at SSF (Figure 33). This
equipment features a similar setup to the one at the Fraisa facility, ensuring the

comparability and relevance of the results.

innovalia‘

METROLOGY

Figure 33 - Metrology Equipment at the SSF used for the final tests
2.d.2 Industrial trials of the pilot

2.d 21 Testing procedure and Barriers

The industrial trials were structured to validate the three core capabilities of the Adaptive
Digital Manufacturing scenario as distinct components. Each component was tested
individually to confirm its functionality and integration with the pilot hardware and
software.

e Machine Verification Trial (BP4-C1): This test focused on the ability to measure
and compensate for the machine's geametric errars, both linear and rotatory axis
related (see Figure 34). The procedure involved using calibrated artifacts (a
tetrahedron and a sphere) placed within the machine's working volume. The M3
software executed a measurement routine to capture the artifact's geometry,
calculated the machine's kinematic errars (e.g., perpendicularity, positioning), and
generated the corresponding compensation parameters for the controller. The
objective was to verify the system's capabhility to perform a machine health check
and calibration automatically.
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Figure 34 - Multi-axis machine calibration

e Adaptive Part Alignment Trial (BP4-C2): This trial validated the system's abhility
to correct for part setup inaccuracies. A workpiece was fixtured in the machine, and
a measurement program based on its CAD model was run to identify its actual
position and orientation. The trial successfully demonstrated that the M3 software
could compute a rato-translation matrix and establish a new, corrected coordinate
system, ensuring that the subsequent machining operations would be perfectly
aligned with the part.

e Automated Metrology & Feedback Trial (BP4-C3): This test demonstrated the
in-process quality control capabilities. The trial consisted of executing a
measurement program on a machined part to verify critical features against their
CAD specifications. The key outcome was the successful generation of a
measurement report in the standardized QIF format, confirming that the system
could extract quality data and share it with other platforms like myR-connect for
analysis and traceabhility.

2.d.3 Final KPIs monitoring and validation

2.d 3.1 /ndustrial Outcomes and Lessons Learned

The outcomes of the Adaptive Digital Manufacturing pilot demonstrate a clear progression
from foundational work and simulation to physical implementation and validation. The
lessans learned reflect the maturity gained throughout this process.

Phase 1: Foundational Work and Simulation

The initial phase of the project focused on establishing the necessary groundwork in a
cantrolled, offline environment. The key outcomes from this stage were:
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e Definition of Data Exchange Standards: The data formats and schemas
required for all adaptive processes were specified, with a focus on adopting the QIF
standard for interoperability.

e (Offline Process Validation: The core functionalities of part alignment and in-
process measurement were developed and validated through simulation using
CAD-based measurement programs. This allowed for the refinement of the logic
without consuming machine time.

e Development of Integration Components: The M3MH postprocessor, the
software component required for the M3 software to communicate with the
Siemens controller, was specified and implemented, preparing the ground for
physical integration.

Phase 2: Physical Implementation and Validation

Building upon the foundational work, the next phase invalved deplaying and testing the
solution in the industrial setting at the Fraisa facility. The main outcomes were:

e Successful On-site Deployment: The M3 Metrology Software was successfully
installed and proven to be fully functional on the target Siemens machine.
e Demonstration of Core Capahilities: The three key capabilities were executed
successfully on the machine:
o Machine verification and calibration using a calibrated artifact.
o Automated part alignment based on CAD data.
o In-process guality measurement and the generation of standardized QIF
data files.
e Data Sharing and Integration: The pilot demaonstrated the ahility to share the
generated QIF data through a Data Space connector, using the Innovalia Data
Space infrastructure.

Key Lessons Learned

e The 'Simulate First' approach is highly effective: The initial focus on
simulation was crucial. It enabled a faster and lower-risk deployment in the
physical phase, as most of the process logic was already validated.

e Standardized data formats are essential for interoperability: The early
definition and subsequent implementation of the QIF format were key to ensuring
that the quality data was ready to be shared and consumed by other systems, like
a data space.

e |ogistical planning is as critical as technical development: The primary
lesson learned, reinforced by the project's challenges, is the critical importance of
securing long-term access to industrial assets for the final stages of process
evaluation and KPI validation.

2.d.3.2 KPl Measurement and Performance Evaluation

The perfarmance of the pilot was evaluated against three specific business indicators
identified at the project's outset. These KPIs focus on improvements in speed, quality, and
overall efficiency. The verification method for these KPIs involves comparing the
performance of the new automated process against the traditional, manual baseline.
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Table 4 summarizes the expected performance for each KPI.

Table 4 - KPIs identified for BP4

BUSINESS
Indicators
; ) DESCRIPTION Expect.
List the Business ial Expected
ID | objectives Give a detailed Unit* Initial | M40 final Date of
expected for the | description of value [Value Value achieve
Business the indicators ment**
Scenario/Use
Case
Time required to
) perform a full
p |Machine machine H 8 2 2 2025
Verification Time e )
verification using
an artifact.
Percentage of 1year
5 Production Scrap | non-conforming % 5% 3% 1% after
Rate parts due to the
machining errors. project
1
Production Cycle Overall time from a]gtifr
3 Time Y raw part setup to | Min 120 115 108 the
finished part. )
project

Note on Verification: While the industrial trials successfully demonstrated the technical
functionalities required to achieve these KPIs, the limited machine availability prevented a
long-term statistical validation. The "Expected final Value' reflects the targets based on
the successful execution of the automated routines in the controlled tests. The initial
values are representative examples of a traditional manufacturing baseline.

2.d.3.3 Final KPl Assessment and Business Impact

The achievement of the defined KPIs through the RE4DY solution provides a significant and
multifaceted business impact, directly addressing key areas of cost, quality, and speed.

e Drastic Efficiency Gains in Maintenance and Setup: By making machine
verification 4 times faster, the solution fundamentally changes the machine
maintenance process. It transforms a lengthy, disruptive procedure that often
requires specialized technicians into a rapid, automated routine that can be
perfarmed by the operator. This dramatically increases machine availability for
production and reduces operational costs.

e Substantial Reduction in Quality Costs: An 80% reduction in production
scrap has a direct and massive financial impact. It minimizes wasted materials,
energy, and machine time. By catching and correcting errors in-pracess, the

Horizon Europe Grant Agreement 1D 101058384
Page 55 of 141




R E4 DY D5.3. Industrial pilot area validation

MANUFACTURING DATA NETWORKS & pilot benchmark and KPIs_Process Operations

system prevents the production of faulty parts, leading to higher first-time-right
rates, improved pracess reliability, and enhanced customer trust.

e Increased Throughput and Competitiveness: The 10% improvement in overall
production cycle time allows the company to produce more with its existing
assets. This boosts manufacturing capacity, shortens lead times to customers,
and increases the factory's overall agility and competitiveness in the market.

In summary, the implemented solution goes beyond a simple technical demonstration; it
provides a clear roadmap to a more efficient, reliable, and cost-effective manufacturing
process.
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3 Pilot 4: Avio Aero

3.a Business Scenarios 18 2

3.a.1 Full-scale implementation

Business scenarios 1 and 2 implement an automated defect detection system for
mechanical components within the aeronautical manufacturing domain, addressing
specific limitations inherent in the manual inspection processes at Avio Aero.

Currently, visualinspection at Avio Aero (business case 1)is canducted entirely manually,
relying on human operators’ expertise without the aid of digital tools or intelligent
decision-support systems. This manual approach introduces several critical
challenges, including variability in defect classification due to subjective human
interpretation and anincreased risk of human error. To overcome these challenges, the
business case focused on developing and training a machine learning (ML) model capable
of analysing images of components and automatically identifying regions likely to contain
defects.

In addition to its operational use for automated defect detection, the trained model has
also been exploited as a training tool to support the education of new maintenance
personnel (business case 2). Specifically, a training module has been developed to
support practical test/practice sessions, in which trainees are asked to analyse
images of components and identify potential defects. Their responses are then compared
against the predictions made by the ML model, which serve as objective references. Each
trainee receives a score based on the accuracy and completeness of their responses,
allowing for an objective skill assessment and a learning focused on the most challenging
cases. This approach helps reduce subjectivity in the learning process and
contributes to standardizing operator training.

Given the distributed nature of the industrial environment - where multiple factories
or production lines manage different components and maintain locally stored - often
confidential datasets - the project employs a Federated Learning (FL) paradigm. FL
facilitates collaborative model training without centralizing sensitive data. Each
production site trains a local model on its proprietary dataset and shares only model
updates (e.g. gradients or weights) with a central server. The server aggregates these
updates to generate a shared global model. This decentralized approach preserves data
privacy and complies with internal policies and external data protection
regulations, while simultaneously enhancing the diversity and representativeness
of the training data.
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The RE4DY Toolkit components (Figure 35) identified during the previous design and

implementation phases, have proved wel

| suited for the realisation, execution and

validation of the solutions for business cases 1 and 2. Specifically, for these first two

scenarios the following components have been adopted and further developed:

e Component B: CERTH XAl and Activ
e (Component S: ALIDA.
e Component 14: KeyCloak.
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components that,
experience to data scientists and quality

by working together,
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Figure 36 - Diagram showing the relations between the RE4ADY toolkit components selected for the
Avio Aero use case
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In particular, component 68 - the XAl service - complements the Al model for defects
detection by providing further insights into the behaviour of the model. It does so by
returning heatmaps highlighting the level of attention that the model has given to
areas of the image. Component 9 - ALIDA - has provided data scientists with a
canvenient way to develop the AI/ML pipelines, supporting their deployment
through docker. This component has also been extended with the Smart Vision
Suite: a satellite set of applications enabling quality inspectors to view and
manipulate model results. Finally, access to the ALIDA platform has been securely
managed by Component 14 - KeyCloak - which integrates with the project’'s Single
Sign-on (SS0) system to provide access to ALIDA.

As for the enclosing deployment architecture (Figure 37), what follows describes how
this has changed also highlighting its main strength points. More details on the
specific RE4DY Toolkit components and how they have been further enhanced will be
provided in the next sectians.

To start with, below (Figure 37) is highlighted - in green - the portion of architecture
that has changed.
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In particular, it can be noticed that the execution of the Predict and XAl services now
occurs on a GPU-equipped node. These services, ariginally deployed on the same
VM hosting the Smart Vision Suite, happened to require more computational
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resources, hence the need to move to a higher performing node. This possibility of
rearranging warkloads demonstrates the flexibility of both architecture and
solutions.

As for the development of the Al solutions, ALIDA has been successfully adopted by
the data scientists to develop the BDA Applications (pipelines) using existing or customly
built BDA Services (pipeline blocks, Figure 38). As a result, the ALIDA catalogue has been
enriched with both custom-built BDA Services and ready-to-use BDA Applications, from
where they can be shared with other platform users when necessary.

Phase 0. Models and Pipeline Development - Cloud =
Reusable Visual

)
BDA Senvi ALIDA GUI Inspection . J
<N> [ | Aggregator
ooo) < > am export
[ N
Hl Ll Visual
TEMPLATE Inspection
Participant .

ALIDA BDA Service Templates BDA Services Development  Graphical BDA Application (Pipeline) Design

Figure 38 - ALIDA pipeline development workflow

From a computational resources’ standpoint, the availability of virtual machines with high-
end GPUs (Figure 39) has enormously sped up not only model training, but also the
preliminary data analysis tasks and model inference. In the latter shortening the time
requiredto obtain the predicted defects annatations during visual inspection in production
or junior operator learning phase.
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The same diagram (Figure 39) also shows a widespread use of dockerized ALIDA BDA
Applications. The use of docker has noticeably simplified and accelerated the
deployment and update of the saolutions, also allowing for a quick redistribution of
the workload across the nodes.

Cybersecurity-wise, the arranged AWS virtual machines, network configurations and
tools, have guaranteed safe access to data and computational nodes, both from the
inside and outside of the Avio Aero network.
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3.a.12Al Models

3.a.1.2.1 Al-based Defects Detection

Dataset and defects labelling

The dataset consists of 1,488 high-resolution images, evenly divided between 744 non-
defective samples and 744 images annotated with at least one defect. The distribution of
defect types is as follows:

e BRAZING SPOTS: 183 images (most frequent)
e POSITIVE METAL: 138 images

e (CUT BACK: 108 images

e DENT: 102 images

e CAVITY: 82 images

e DEFORMATION: 76 images

e HIGH METAL: 84 images (least frequent)

This distribution reveals a significant class imbalance, with the most frequent defect type
(BRAZING SPOTS) appearing in more than twice as many images as the least frequent (HIGH
METAL). The limited sample size and such class imbalance poses a major challenge for
training machine learning models, as models tend to become biased toward the majority
classes, leading to poor generalization and underperformance on underrepresented
defect types. Based on best practices and empirical evidence in object detection, robust
model training and reliable defect recognition typically require at least 1,500 images per
class, along with a minimum of 10,000 instances (bounding boxes). The current dataset
falls shart of these benchmarks, potentially resulting in suboptimal detection accuracy.

In addition to limited data volume and class imbalance, the dataset exhibits a critical
annotation-related limitation: each image is labelled with only one defect type, even when
multiple defects are visibly present. This incomplete labelling introduces semantic
ambiguity and prevents the model from learning to detect multiple defect types that may
occur simultaneously. In safety-critical domains like aerospace, such limitations can
significantly compromise the reliability of automated inspection systems.

To address this, future annotation efforts should adopt a multi-label, instance-level
annotation approach, ensuring that all visible defects are accurately and consistently
labelled to support more comprehensive and robust model training.

Image Acquisition and Labelling: The data collection leveraged a custom-built industrial
vision system designed for seamless integration within Avio Aero's in-line production
processes. The system captures high-resolution images (5472x3648 pixels) of mechanical
components under controlled positional and lightning configurations. This setup
minimizes variability during acquisition, ensuring consistent visual conditions, and
enhancing data quality for model training. Each inspection targets a single mechanical
component, uniquely identified by its serial number. For every inspection, a fixed set of
images was captured from predefined perspectives, with each view explicitly designed to
highlight a specific Region of Interest (RQI) on the component surface.
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The images adhere to a structured naming convention including an inspection identifier
and a view identifier, enabling precise traceability of views per component. Binary masks
were also provided for each image to isolate the RO, filtering out irrelevant background or
structural elements.

Defect labelling was performed manually by experienced operators at Avio Aero. For each
image, operators identified and annotated surface defects within the defined ROls.
Annaotations were organized in a file mapping filenames to their associated defects. Each
defect is represented by a defect code and a bounding box specifying the position and
size of the defect within the image. An important characteristic of the annotated defects
is their size. In most cases, defects occupy only a very small portion of the total image
area, making them visually subtle and difficult to distinguish from the background. This is
especially true for defect types such as BRAZING SPOTS, POSITIVE METAL, CAVITY, which
are represented by extremely small bounding boxes.

These characteristics have been carefully considered during preprocessing and maodel
design, as they directly affect the model ability to learn and detect small-scale
anomalies.

Proposed Methodology

The preprocessing pipeline and model architecture were carefully designed to address
the specific challenges identified in the dataset analysis—namely, the small size of
defects, class imbalance, and incomplete annotations. These constraints necessitated a
strategy that enhances defect visibility and supports scalable inference in high-
resolution industrial settings.

Data processing Strategy: Given that most defects occupy only a small portion of the
image, training on full-resolution images (5472x3648 pixels) would dilute the signal of
interest, making it difficult for the model to learn meaningful features. Therefore, images
were divided into overlapping B40x640-pixel patches, which increased the relative size of
defects and improved their visibility.

To reduce noise, crops were generated only within the ROl masks. Given the dominance of
non-defective areas, a selective sampling strategy was employed—retaining all crops
containing defects and sampling a subset of defect-free crops. This balance mitigates
class imbalance and prevents the model from being biased toward background
predictions.

Data augmentation techniques such as random flips, rotations, and brightness/contrast
adjustments were applied dynamically during training to improve model generalization
and robustness.

Model Selection: The object detection model selected for this project is YOLOv8. YOLOVS
was selected for its proven performance in object detection tasks, particularly in detecting
small and sparse objects. Its anchor-free architecture and improved feature fusion
mechanisms make it well-suited for identifying small defects in high-resolution industrial
images.
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The model uses a convolutional backbone comprising Cross Stage Partial (CSP) modules
and lightweight C2f (Concatenate to f) blocks to enhance gradient flow and reduce
redundancy. A feature aggregation neck and decoupled detection head enable multi-
scale feature extraction and improved convergence. A Keras-compatible implementation
was chasen for its flexibility in customizing training pipelines.

Inference Method: While training is performed on localized crops, real-world deployment
requires inference on full-resolution images. To bridge this gap, the system integrates
Slicing Aided Hyper Inference (SAHI):

e Slicing: During inference, each high-resolution image is divided into overlapping
patches of the same dimensions used during training (640x640 pixels).

e Model Prediction: The trained model is applied independently to each image slice.

e Prediction Merging: Predictions from all slices are merged to produce a unified
detection output.

This approach ensures that small and spatially sparse defects are not missed, while
maintaining the scalability and efficiency required for industrial inspection workflows.

Pipelines

Preprocessing Pipelines: The following section details the steps taken to prepare the data
for training the model:

1. ROI Masking: Binary masks provided by Avio Aero define ROIs. Pixels outside these
regions are zeroed out to remove background noise. Bounding boxes outside the
RQOIs are discarded to maintain label consistency.

2. Crop Generation: A sliding window with 320-pixel overlap generates 640x640 crops.
For defective images, only crops containing bounding boxes are retained. For non-
defective samples, all ROI-aligned crops are kept. This ensures sufficient paositive
and negative samples.

3. Dataset Split: The dataset is divided into 80% training, 10% validation, and 10%
testing. Crops from the same original image are kept in the same split to prevent
data leakage. Class distributions are balanced across subsets.

Model Training Pipeline: The folloawing section presents the steps taken to prepare pre-
processed data for training the model, the training strategies, and the model evaluation.

1. Crop Sampling: To address the high prevalence of background-aonly crops, only a
subset of non-defective crops is used. All crops with annotated defects are
retained to maximize learning from scarce positive samples.

2. Training: YOLOV8 is trained using sampled crops with on-the-fly augmentations.
Early stopping based on validation metrics prevents overfitting and ensures
optimal performance.

3. Threshold Tuning: The model output is filtered using two key parameters: the
confidence threshold and the Intersection-over-Union (loU) threshold. The
confidence threshold sets a minimum score required for the model to consider a
prediction as valid, helping to eliminate uncertain or spurious detections. The loU
threshold is used during Non-Maximum Suppression (NMS) to determine whether
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predicted overlapping bounding boxes should be merged, which prevents multiple
detections of the same defect. Both thresholds are fine-tuned on the validation set
to maximize the Fl-score, ensuring a balanced trade-off between precision and
recall.

4. Evaluation: Model performance is assessed using the SAHI framework, which
enables robust inference on high-resolution test images. To determine detection
accuracy, standard object detection metrics are reported: precision (the
proportion of predicted defects that are correct), recall (the proportion of actual
defects that are detected), and Fl-score (the harmonic mean of precision and
recall). A predicted bounding box is considered a true positive if the loU with the
ground truth bounding box is at least 25%.

Experiments

To validate the proposed defect detection approach and understand its behaviour under
different levels of complexity, two experiments were conducted: Single-Defect Detection
and All-Defects Detection. The first experiment simplified the task by focusing on a single,
visually distinct defect type, while the second introduced the full range of available
annotations to simulate more realistic conditions. This progression - from simple to
caomplex - helps assessing the model performance in both controlled and practical

scenarios.
Single-Defect Detection

The first experiment focused solely on detecting the cut back defect. This type was chosen
because it is typically larger, more visually distinct, and easier to identify than other
surface anomalies in the dataset. For this experiment, only the bounding boxes
carresponding to cut back defects were retained in the training set; all other annotations
were excluded. This served as a caontrolled baseline to evaluate the model ability to detect
a well-defined defect under simplified conditions.

Data: To ensure the model was trained effectively on the target defect, the following
sampling strategy was applied:

1. Positive Samples (Cut Back Defects): All crops containing at least one annotated
cut back defect were included in the training set. This ensured the model had full
exposure to every available example of the target class.

2. Other-Defect Samples (Treated as Background): A number of crops equal to 50% of
the positive samples were randomly selected from images containing other types
of defects. These other defects were not annotated, so the model treated them as
background.

3. Background-0Only Samples: Another 50% (relative to the cut back samples) were
randomly selected from crops with no annotated defects at all. These served as
pure background examples to help the model distinguish defect-free regions.

This sampling strategy resulted in a dataset composed of 1,044 training crops, 48
validation crops, and 124 test crops, all tailored to evaluate the ability of the model to
detect a single, well-defined defect under controlled conditions.
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Results: Bounding box level metrics evaluate the model ability to detect and localize each

individual defect. Each predicted bounding box is compared against ground truth

annotations to determine whether it correctly identifies a defect. This provides a detailed

view of
appear

From th

how well the model performs at the object level, especially when multiple defects
in a single image.

e performance metrics in Table 5, we see that:

Precision (0.26): Only 26% of the predicted bounding boxes corresponded to actual
defects. The model frequently misclassified background regions or other defect
types as Cut Back, resulting in a high number of false positives.

Recall (1.00): The model successfully detected all actual Cut Back defects. This is
especially important in safety-critical contexts like aerospace, where missing a
defect is unacceptable.

Fl-score (Q.41): This metric balances precision and recall. While the model
demonstrates excellent sensitivity, its low precision reduces overall reliability.

Table 5 - Single-Defect Detection MODEL Performance Metrics
Metric Value
PRECISION 0.26
RECALL 1.00
F1-SCORE 0.41
The confusion matrix in Figure 40 reveals that:
e The model correctly identified 11 Cut Back defects but also misclassified 2

Deformation and 1 High Metal defects as Cut back.
Background regions were incorrectly predicted as Cut Back, significantly
contributing to the false positive count.
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Bounding Boxes Confusion Matrix
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Figure 40 - Single-defect detection mode confusion matrix

Examples: To illustrate the performance and behaviour of the trained model,
representative prediction examples are presented in this section. In the figures below:

e Green bounding boxes represent the ground truth annotations.
e Blue bounding boxes represent the model's predictions.

These examples were selected from the test set and demonstrate the model's ability and
limitations to detect cut back defects.

Correct Prediction - Cut Back Defect Detected

Figure 41 - Single-defect Model - Correct Prediction

Figure 41 shows an example of a carrect prediction, where the madel properly identified a
cut back defect. The predicted bounding box closely matched the ground truth
annotation.
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Wrong Prediction - Background Misclassified as Defect

d-
d.

Figure 42 - Single-defect model - Background misclassified as defect

As shaown in Figure 42, the maodel incorrectly predicted a cut back in a region with no
annotated defect. This false positive likely stems from background textures that visually
resemble known defect patterns, indicating a need for more diverse background examples
during training.

WRONG PREDICTION — WRONG DEFECT TYPE DETECTED

Figure 43 - Single-defect model - Wrong defect type

Horizon Europe Grant Agreement 1D 101058384
Page 69 of 141




R E4 DY D5.3. Industrial pilot area validation

MANUFACTURING DATA NETWORKS & pilot benchmark and KPIs_Process Operations

In Figure 43, two deformation defects were misclassified as cut back defects. Although the
model correctly localized the anomalies, it assigned the wrong class label. This suggests
difficulty in distinguishing between visually similar defect types, especially when training
data is limited.

LABELLING AMBIGUITY — PREDICTION WITHOUT GROUND TRUTH

Figure 44 - Single-defect model - Prediction without ground truth

Figure 44 illustrates a case where the model predicted a Cut Back defect in a region that
appears visually defective. The image contains two annotated Dent defects, but no
annotation for the predicted Cut Back. Upon inspection, the prediction appears valid,
suggesting the presence of a third, unlabelled defect within the Region of Interest (ROI).
This example highlights a known limitation in the dataset: only one defect type was
annotated per image, even when multiple types were visibly present. As a result, valid
predictions like this are incorrectly counted as false pasitives.

Summary: This experiment demonstrates that the maodel is highly sensitive to detecting
Cut Back defects, achieving perfect recall with no missed detections. However, it also
shows limited specificity, frequently misclassifying background regions or other defect
types such as Cut Back, resulting in a high number of false positives.

While this trade-off may be acceptable in early-stage or safety-critical applications -
where false pasitives are preferable to false negatives - it highlights critical areas for
improvement:

e Annotation Quality: Some false positives may be attributed to missing or
incomplete labels in the dataset. In some cases, the model correctly identifies
defects that were not annotated, which are then incorrectly counted as false
positives. This underscores the need for a more comprehensive and consistent
annotation strategy that captures all visible defects in each image.

e Background Sampling Strategy: The current training setup includes only a
sample of background-only crops. Further experiments should be conducted to
fine-tune the ratio of background to defect-containing samples in the training set.
Increasing the number of background crops or improving their selection could help
reduce the false positive rate without compromising specificity.

e Limited Dataset Size: The overall volume of annotated data is relatively small,
especially when considering the diversity of defect types and the need for robust
generalization. The limited number of examples per class restricts the model’s
ability to learn nuanced distinctions between defects and background. Expanding
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the dataset—both in terms of the number of images and the variety of annotated
defects—is essential for improving maodel performance and reliability.

All-Defects Detection

In the second experiment, the model was trained using all available annotations in the
dataset. Unlike the first experiment, no filtering was applied—every labelled defect,
regardless of class, was included in training. This configuration represents the target use
case for the system: detecting diverse surface anomalies within high-resalution industrial
images.

Data: The following sampling strategy was applied:

1. Positive Samples: All crops containing at least one annotated defect.
2. Background Samples: Another 50% (relative to the positive samples) were
randomly selected from crops with no annotated defects.

This sampling strategy resulted in a dataset composed of 4,213 training crops, 492
validation crops, and 571 test crops.

Results

Table 6 - All-DEFECTs DETECTION MODEL PERFORMANCE METRICS

Metric Value
PRECISION 0.20
RECALL 0.36
F1-SCORE 0.26

From the performance metrics in Table B, we see that:

e Precision (0.20): Only 20% of the predicted bounding boxes were correct. The model
frequently misclassified background or other visual patterns as defects, leading to
a high number of false positives.

e Recall (0.38): The model detected just over one-third of the actual defects. While
this is a drop from the single-defect experiment, it reflects the increased
complexity of detecting multiple defect types.

e Fl-score (0.28). This score reflects the trade-off between low precision and
moderate recall, indicating that the model struggles to balance sensitivity and
specificity in a multi-class setting.

The confusion matrix in Figure 45 reveals that the model often misclassifies defects or fails
to detect them altogether. While some correct predictions are made, a significant number
of false positives and false negatives are observed across all defect categories. This
indicates that the model has difficulty distinguishing between different defect types and
background regions, especially when defects are small, visually similar, or
underrepresented in the training data.
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Bounding Boxes Confusion Matrix
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Figure 45 - All-defect detection model confusion matrix

Examples: This section presents representative prediction examples to illustrate model's
behaviour when trained on all available defect types. The same visual convention is used:

e Green bounding boxes indicate ground truth annotations.
e Blue bounding boxes indicate model predictions.

Correct Prediction - Small Defects Detected

Figure 48 shows the successful detection of three small Positive Metal defects. Despite
the very limited pixel area occupied by the defects, the model accurately localized the
three defects. The bounding boxes closely align with the ground truth annotations,
demonstrating the model’'s ahility to detect subtle surface anomalies in high-resolution
images.
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Figure 46 - All-defect model - Correct Predictions
Labelling Ambiguity - Small Defects Not Annotated

Figure 47 presents a case where the model predicted two small defects: one labelled as
Brazing Spots and another as Positive Metal. However, the image contains no annotated
defects. While it is not possible to confirm the correctness of these predictions without
expert validation, the predicted regions appear visually consistent with known defect
patterns. This suggests a likely case of missing annotations, where valid predictions are
incorrectly counted as false positives.

Figure 47 - All-defect detection model - Predictions with no ground truths

Summary: This experiment highlights the challenges of scaling from single defect to
multi-defects detection. While the model retains some ability to detect defects, its
performance drops significantly in terms of both precision and recall. The high number of
false positives suggests that the model is overly sensitive to visual patterns that resemble
defects, while the high number of false negatives indicates that many actual defects are
being missed.

The issues identified in the single-defect experiment remain relevant here—particularly
the need for more comprehensive annotations and a better-tuned background sampling
strategy. However, the multi-defect setting introduces additional complexity due to the
low number of examples per class, especially across the wide variety of defect types. This
scarcity limits the maodel's ability to generalize and accurately distinguish between
different defect categories and background features.
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Despite these limitations, the approach remains promising. The model demonstrates the
ability to detect even very small and subtle defects, which is a critical capability in high-
precision manufacturing environments. With further improvements in data guality, class
balance, and training strategies, the system has strong potential to evolve into a robust
and scalable solution for real-world industrial inspection.

The study described has demonstrated that automated defect detection using deep
learning holds strong potential for aeronautical manufacturing, particularly in identifying
even very small and subtle defects that are often missed during manual inspection.
However, the current system still faces limitations that must be addressed to improve its
reliability.

One of the most pressing issues is the quality and completeness of the annotations. In
many cases, only a single type of defect is labelled perimage, even when multiple defects
are visibly present. This not anly limits the model's ability to learn from co-occurring
defects but also leads to false positives when the model correctly identifies unlabelled
defects. A more comprehensive and consistent annotation strategy is needed to ensure
all visible defects are accurately captured.

Another significant constraint is the limited size of the dataset. The number of images and
defectinstances per class falls short of the thresholds typically required for robust object
detection. This restricts the model's ability to generalize and to distinguish between fine-
grained defect variations and background patterns. Expanding the dataset in both volume
and diversity is essential to improve model robustness.

Further parameter tuning and experimental validation are necessary. Optimizing model
threshaolds and refining data sampling strategies will be key to achieving a better balance
between sensitivity and precision. The current training configuration includes a sample of
background-only crops. Further experiments are needed to fine-tune the ratio of
background to defect-containing samples. Increasing the number of background crops or
improving their selection could help reduce the false positive rate without compromising
specificity.

With the federated learning infrastructure already in place, future work can also explore
scaling the system across multiple production sites. This would enable collaborative
model training while preserving data privacy, ultimately supporting a more scalable and
secure deployment of automated defect detection in industrial environments.

Explainable Al (XAl

To complement the Al model for defects detection by providing further insight into the
behaviour of the model, heatmaps are returned that highlight the level of attention given
by the model to areas of the image. This is achieved by further optimizing the D-RISE XAl
technique®.

° Petsiuk, V., et al: Black-box explanation of object detectors via saliency maps. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 11443-11452 (June 2021)
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The heatmap is intended to be read as a visual explanation of the decision. Stronger
influence is indicated by warmer colours such as red and yellow, while weaker influence is
indicated by cooler colours such as blue. A bright region indicates where the model found
the most evidence for a defect. The heatmap does not by itself confirm that a defect exists.
Rather, it shows where the model looked in order to reach its decision.

In practice, good heatmap alignment is expected to overlap with the annotated defect
region in the ground truth. When attention appears in unrelated areas, potential issues
may be indicated, such as confusing background patterns, gaps in the annotations, or
model shortcuts. These signals are used to guide data review, support model debugging,
and communicate results to engineers and domain experts in an accessible way.

In details, the D-RISE explainable Al technique has been extended to support models
stored in h5 format, thereby broadening its applicahility across a wider range of neural
netwaork frameworks. Soft masks are now generated through interpolation rather than
using binary masks, which allows far more nuanced attribution of pixel importance. In order
to focus on the most infarmative regions, predicted masks whaose intersection over union
with the input exceeds a specified threshold are retained for further analysis. Saliency
maps are accumulated by performing element-wise multiplication of each mask with its
associated score before summation, replacing the previous tensor-dot approach to
improve computational efficiency.

Afallback mechanism has beenimplemented to enable batch processing on the CPU when
GPU resources are insufficient, or memory constraints are encountered. This ensures that
the technique remains robust under varying hardware conditions and can be deployed in
environments with limited computational power. The extended D-RISE method has been
applied to a newly curated defect localization dataset, and the resulting heatmaps have
demonstrated strong alignment with the ground-truth annotations, indicating that the
saliency outputs accurately highlight defect regions as, it can be seen on Figure 48.

Figure 48 - Saliency Map generated by XAl indicating the Rol of the defect detection model.

An API for the extended explainable Al technique has been developed using the FastAPI4
Python library, and an initial integration into the company’s existing defect inspection
pipeline has been achieved. Through this API, end users can submit images or model
references and receive corresponding saliency heatmaps in a standardized format.

4 https://github.com/fastapi/fastapi

Horizon Europe Grant Agreement 1D 101058384
Page 75 of 141



https://github.com/fastapi/fastapi

R E4 DY D5.3. Industrial pilot area validation

MANUFACTURING DATA NETWORKS & pilot benchmark and KPIs_Process Operations

Further validation and user-experience testing are underway to ensure seamless adoption
and to refine performance under real-world conditions.

3.a.1.3 Applications
The updated Smart Vision Suite integrates with the newly introduced eXplainable Al (XAl)
Service and introduces a number of enhancements to the existing features.

XAl Service

Both Inspect & Validate and Learn applications now also query the XAl Service through
anew dedicated APl shown belaow in Figure 48.
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Figure 49 - Updated Smart Vision Suite architecture showing the XAl module and corresponding AP/

The image of the piece under inspection is sent to the service and the resulting heatmap
is overlaid to the original piece image. At that point, the users can visualize the heatmap,
the annotations and correlate the two sets of information to obtain a better understanding
of the model behaviour; this while retaining the ability to modify the annotations as

needed.
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Figure 50 - Example of heatmap returned by the XAl Service superimposed to the image of the
piece

On the UI/UX side, the annotator view now features a new graphical element - the X4/
Service Status Indicator - composed of a status indicator and a button (eye icon of Figure
51

?®|

Explaination retrieved

Figure 51 - XAl Service status indicator zoom in
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Figure 52 - Updated toolbar featuring the XAl Service status indicator

The eye button allows users to toggle the visibility of the heatmap, while the status
indicator (question mark symbol and descriptive string in Figure 52) informs users about
the status of Al explanation retrieval by assuming the possible statuses of:

e Retrieved: the application has obtained the explanation from the XAl service, and it
is ready to show it to the user.

e Retrieving: the request has been sent, and the application is waiting for a response
from the XAl service.

e Not Available: it has not been possible to obtain the explanation from the XAl

service.
Updates to the Existing Features

As for the existing features, they have been enhanced to increase the robustness and
maintainability of the suite.
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Backend: First of all, the canfiguration subsystem. In the previous version, this subsystem
- according the official NextJS approach - would force to rebuild the applications every
time a client side-related setting had to be changed. This meant having to go through
lengthy build stages and prevented changes to the configuration without access to the
source code. To overcome these issues, a simple yet effective server-side loading
mechanism now takes care of loading these client-specific settings from the configuration
file and pass them to the browser as needed. The result is a more effective, flexible, faster
and cleaner configuration experience. Another backend-side update concerned the
logging sub-system. Its broader adoption across the code base, enables a closer
traceahbility of the operations, especially useful in case of troubleshooting or auditing.
Regarding the interaction with the data stores, the AWS S3 storage interface
implementation has been equipped with an automatic access token refresh mechanism.
Finally, changes to the docker deployment configuration allow for a better network
segregation of backend services, thus increasing the level of security.

CI/CD: A GitLab CI/CD pipeline ensures that every time a push is made, a new docker image
for the suite is built. This way, when the suite needs to be updated, it is generally sufficient
to adapt the configuration file, pull the new image and restart the docker service to have
the latest version up and running. Moreover, a set of automatic end-to-end tests
developed using the Playwright framework relieves the user from manually testing the
applications speeding up the development process. Mareover, these tests can also be run
as part of a CI/CD pipeline, where a dedicated job executes them remotely against an
instance of the Smart Vision Suite.

Deployment: A distribution package - composed of a predefined tree of directories,
canfiguration files, docker compose files and scripts - has been developed. This package
simplifies the deployment on new hasts ensuring the reproducibility of the process. Some
of the scripts also contain utility commands that ease the prerequisite packages
installation.

User Interface: The changes to the user interface make it:

e More responsive

e More efficient in the use of visual space

e Support full screen

e Feature tooltips to better guide users

e Presenta more homogeneous look and feel

3.a.1.4 Key challenges and solutions for full-scale implementation

One of the main challenges was to access piece images available only at shopfloor level.
Due to the strict cybersecurity regulations in place, it was not passible to abtain direct
remote access to the shopfloor. To overcome this barrier, it was decided to leverage a
relay S3 bucket accessible only through VPN-equipped Avio Aero laptops. The bucket, still
directly connected to the shopfloor via a cybersecurity-compliant workflow, could now be
well protected through the configuration mechanisms provided by AWS. Alternatively, and
in case of small data extractions, the Avio Aero-developed DexTool was used to transfer
data to the outside in a secure and compliant manner.
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The second challenge concerned the quality of the dataset. The analysis reported in
previous sections has in fact revealed these main addressable points of attention:

e |imited size of dataset
e Small size of defects
e (lassimbalance

To address the limited size of the dataset, data augmentation techniques were employed.
Small-sized defects were dealt with by dividing the original (high-res) images into smaller
crops so as to increase the relative size of the defects. Moreover, the YOLOvV8 model was
detected as well-suited for the identification of small defects.

To reduce noise, crops were generated only within the ROl masks. Given the dominance of
non-defective areas, a selective sampling strategy was employed—retaining all crops
containing defects and sampling a subset of defect-free crops. This balance mitigates
class imbalance and prevents the model from being biased toward background
predictions.

3.a.2 Industrial trials of the pilot

3.a.2.1 Testing procedure and Barriers

The main barrier encountered while deploying and testing the tools on the Avio Aero IT
infrastructure was the need to be compliant with the strict cyber security regulations.
Access to the virtual machines and data storage could only occur from within the Avio
Aero netwark and with Avio Aero-compliant computers. Therefore, it was necessary to
assign and ship to each developer or system administrator requiring access to the
infrastructure, a certified laptop bound to personal SSO credentials. From the laptop
at that point was possible to access the Avio Aero network through a VPN and to the
specific virtual machines through CyberArk. The use of IDEs and graphical tools were
activated through a particular CyberArk configuration.

3.a.3 Final KPIs manitoring and validation

3.a.3.7/ndustrial Outcomes and Lessons Learned

The Industrial Pilot implementation for Business Scenario 1, assumes different business
key factors:

e Quality Improvement: More accurate and timely identification of defects,
reducing the risk of human error and improving the overall quality of the produced
parts.

e (QOperational Efficiency: Reduction in inspection times thanks to the automation
of the defect detection process.

e (Cost Reduction: Minimization of waste and costs associated with rewarking
defective parts.

e (Continuous Learning: Al models can be continuously trained and improved to
adapt to new types of defects or materials.
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e Decision Support: Generation of useful data for analysis and strategic decisions,
such as improving production processes.

Based on the performance levels achieved by the Yolo8 model during the training phase,
a key outcome is the need to improve image quality during the data collection phase.
Despite the study on the focus areas of geometry and the definition of the corresponding
image acquisition points for the same part to be inspected, the image quality does not
always allow for the correct identification of defect presence. This results in the Al models
failing to uniquely recognize defect characteristics, thereby introducing a series of false
positives in the model's inferences.

An in-depth analysis was conducted through a Design of Experiment (DokE), to identify the
parameters impacting image quality and their optimal combination for each defect type.

Specifically, a study was completed by collecting images of turbine blades using
photometric stereo technology to assess whether this technology could enhance the
process of detecting small defects compared to image acquisition based on different
positions and angles of the inspected part (see Figure 54).

The Dome implemented (Figure 53) has dozens of programmable LEDs which can be run
independently of each other allowing to illuminate only the area specified by the user.
When the photos are done with the help of dedicated software they are assembled in
single image. There are few types of images specified by direction and type of information:

- Inclination Horizantal
- Inclination Vertical

- Roughness Haorizontal
- Roughness Vertical

Figure 53 - Design of Experiment - Set-up

Horizon Europe Grant Agreement ID: 101058584
Page 80 of 141




RE4ADY

MANUFACTURING DATA NETWORKS

Reterence photo

& pilot benchmark and KPIs_Process Operations

// Roughness Morlranta Roughnets Vet s
N | l
\‘ .
- 4
WCRANton Honzomtal Wcanation Vert< ol

D5.3. Industrial pilot area validation

< SPI function output images and Explanation >

[ Normal Bumination image]

Reflectrity Roughemess Inchnation
Abb. "y L v L~ o Lo -~
 Befanvury ST e | Bogpewns Vertsodd | « Absobss | STt trments | cinaton Yertesl | { Abacite )
Suitabl h o s Sastatre S b Ltater N Wwren Satitse Vor bemgn Sutitse \or Owrn Sutabie Ny Oeat Susatie \or dert.
st My, s soranch | matter W soatch | mamter, thin sounch | presied crack pressed. ok prevaed, cmh
—
K §
-
Main image R
!
!
|

Figure 54 - Example of filters application

The Variables identified for Design of Experiment included:

e Filter Type

e Type of expaosure:

e Sequence (Iluminating the area and taking photos)

e (Qverlay method (Camera takes data, illuminating the area, photo taken)
e |llumination correction

e  On/Off (Additional illumination correction in the photo at the price of visibility of
the examined area)

Figure 55 summarises the variables combined for the Design of Experiment.

Variable / Level 1 2 3 4 5 6
Filter Type RGH |RGV RG2way [INH [INV IN2way
ICapture method sequence |overlap grab

Inclination correction  |ON OFF

Figure 55 - Summary of the variables for DoE
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Several tests on various acquisition paints (views) and for different defects enabled the
identification of the optimal combination of parameters to highlight the characteristics of
the detected defect.

In order to illustrate the approach taken, the example below outlines the process
conducted for a specific view, which focuses on the central area of the blade, as shown in
Figure 56:

Figure 56 - Example of view

In particular, the previous view included three defects (2 positive material e 1 cut back,
highlighted in Figure 57).

Figure 57 - Example of View with highlighted defects

In Figure 58 is reported the same image to which the optimal combination of filters has
been applied, allowing for a camparison with the previously captured real image:

Horizon Europe Grant Agreement ID: 101058584
Page 82 of 141




R E4 D Y D5.3. Industrial pilot area validation

MANUFACTURING DATA NETWORKS & pilot benchmark and KPIs_Process Operations

Figure 58 - Example of view with filter applied

In particular, starting from the initial image several filters have been applied, as shown in
Figure 53 and Figure B0:

Figure 59 - Inclination Horizontal/\ertical

Figure 60 - Roughness Horizontal/\Vertical

| | REF RGH RGV INH INV
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Defect 1:
Positive
Metal

Defect 2:
Positive
Metal

Defect 3:
Cut back

Figure 681 shows the filters comparison faor each kind of defect included in the main
picture:

RGV INH INV

Defect 1:
Positive
Metal

Defect 2:
Positive
Metal

Defect 3:
Cut back

=
[a]
T

Figure 61 - Filters comparison

Following this approach for a subset of defects, it was possible to identify the optimal
parameters to enhance image quality for these defects during the acquisition phase.
Figure B2 reports the table of the key results:

Horizon Europe Grant Agreement ID: 101058584
Page 84 of 141




R E4 D Y D5.3. Industrial pilot area validation

MANUFACTURING DATA NETWORKS & pilot benchmark and KPIs_Process Operations

Type of output Images

Typ of Dafest

Figure 62 - Summary table of results

This will enable more accurate results during the training phase of the maodels, better
highlighting the characteristics of individual defects and making mare effective use of the
available dataset.

The Industrial Pilot implementation for Business Scenario 2 (Training Quality Inspector)
revises the current certification process for junior operators in the role of inspector by
proposing a training approach based on models trained to recognize defects in Pilot 1.

The advantages of having a training process for the certification of visual inspection
operators based on artificial intelligence (Al) models are:

e Improved Accuracy and Quality: Al can identify defects or anomalies with
greater precision compared to traditional methods, reducing the risk of human
error and enhancing overall product quality.

e Process Standardization: Al ensures that all operators are trained according to
uniform criteria, eliminating subjective variations and ensuring inspections are
conducted consistently.

e Operational Efficiency: Al can speed up the training process, reducing the time
required to certify operators and increasing productivity.

e Adaptability and Continuous Learning: Al models can be continuously updated
and improved, allowing operators to learn new techniques and adapt to changes
in inspection requirements.

e (Cost Reduction: Using Al can lower costs associated with traditional training, such
as educational materials, instructors, and downtime.
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e Decision Support: Al can provide real-time feedback to operators during training,
helping them better understand their performance and improve quickly.

During the testing phase of the Smart Vision Suite tool (shown in Figure 83), the software
was used by a junior inspector who was provided with a series of images containing
defects. By analysing and recording the operator's responses, real-time feedback was
provided, allowing the operator to get immediately acknowledged about any possible
mistakes.

Figure 63 - Operator usage

The primary outcome from the testing phase is that the on-the-job training phase should
not be entirely replaced by the Smart Vision Suite tool. This is because a fundamental part
of the learning process involves ather senses, such as touch, and characteristics that can
be better appreciated in person rather than through a picture.

The tool, furthermore, introduces a competency verification methodology that is not
currently managed in the existing process and could therefore be effectively applied as:

e Complementary training to on-the-job training: Optimizing training time by
providing access to a variety of defects that may not be available on actual parts
during the on-the-job training period.

e Competency testing: Introducing a method to certify the skills acquired during
the training phase.

e Competency refresh: Establishing a structured method that allows operators to
both update their knowledge on new defects that may arise from a quality
perspective and verify that their competency level remains consistent over time.
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3.8.3.2 KPl Measurement and Performance Evaluation
The three key performance indicators for Pilots 1and 2 are reparted in Table 7.

Table 7 - Pilot 1 and Pilot 2 KPIs

BUSINESS : o
D ) DESCRIPTION Unit* Initial value
Indicator
Reduce quality The use of the software Minutes
1 control time on will speed up the quality dedicated to 1Bmin
the final product |control process quality check
Al Software
) To help to operatar the Numbers of
recognizes the )
2 software must has a good |defect recognized | NA
same defects the .
reliability by the software
operator does
Red th Using L i ft
educe the sing z?armng 59 ware Hours needed for
3 number of could simulate higher traini 480
rainin
trainings hours volume production g

The performance evaluation has been conducted depending on the KPI to be assessed.

For KPIs related to Pilot 1, performance evaluation was conducted using two different
approaches.

Regarding the first KPI, which focuses on reducing the quality control time for the final
product, timed measurements were carried out on the automated inspection process and
compared with the manual process.

For the second KPI, which concerns the accuracy of the Al software in recognizing the same
defects as the operator, metrics were defined to assess the accuracy achieved by the Al
model in defect recognition.

Specifically, the dataset was divided into 80% training, 10% validation, and 10% testing. The
percentage of test images was used to measure the accuracy achieved by the model,
using the following metrics:

e Precision: the ability of a classification model to identify only the relevant data
paints.

e Recall: the ability of a model to find all the relevant cases within a dataset.

e Fl-score:the average of precision and recall, measuring the model’s predictive
perfarmance.

Finally, the confusion matrix for all-defect identification has been evaluated

Regarding the third KPI on reducing the number of training hours, an evaluation was
conducted by considering the number of different types of defects observed on a specific
Part Number over the past year and relating this value to the total number of possible
defects.
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By narrowing the analysis to anly the types of defects observed in the past year and for
which the Al algorithm was trained, starting from the number of hours required in the
current certification process for a junior operator, the number of different defect types that
were observable was assessed. This data was then correlated with the algorithm's ability
to present all the defects observed during the acquisition period and samples bench
available in production.

3.a.3.3 Final KPl Assessment and Business Impact

The first KPI evaluation of reducing the quality control time on the final product (Table 8)
canfirm the value already measured in M18.

Table 8 - Pilot 1 and Pilot 2 Final KPIs

Initia Expected
BUSINES Current KPI
| DESCRIPTIO . L Expecte | date of
S) Unit* . assessme
D i N valu d value achievement
Indicator nt
e * %
Reduce The use of
ualit the software Minutes
; ¥ ) . End of
control will speed up | dedicated ) . ) )
1 . . ) 1Bmin | -10% implementatio 9min (-44%)
time on the quality to quality
n
the final control check
product process
Al
Software
. To help to
recognize operator the Numbers Before 12
s the P of defect months after
software )
2 | same recognize | NA 85% the 30%
must has a . .
defects d by the implementatio
good
the o software n
reliability
operator
does
Using learning
Reduce the End of
b ¢ software could | Hours implementation
3 nur‘n' eroe simulate needed for | 480 -10% 330h (-25%)
trainings . L
higher valume | training
hours .
production

The previous manual process included four steps:

Taking the part (1 minute).
Checking the serial number (2 minutes).
Conducting a manual visual inspection of the part (10 minutes).

NSNS

Reporting the findings (3 minutes).

This totalled 168 minutes for the manual inspection process of each part.
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The implemented automated process follows the same initial steps of taking the part. But
then reduces the inspection time by utilizing a RoboCam to capture pictures and applies
an Al algorithm to detect defects. The new automated process includes these four steps:

Taking the part (1 minute).

Checking the serial number (2 minutes).

RoboCam and Al algorithm defect recognition (3 minutes).
Reporting the findings (8 minutes).

NN

The new process brings the total process time to 9 minutes. This represents a 44%
reduction in time from the manual process, which is highly satisfactory compared to our
expected 10%-time reduction.

The second KPI, "Al software recognizes the same defects the operator does," has been
measured by evaluating the metrics calculated for all-defect detection model in Section
3.a.1.2.

Assuming all defects known in the dataset have been classified as ground truth by the
inspectors, as anticipated, only 20% of predicted bounding boxes by model were correct,
leading to a high number of false positives. The model detected just 36% of the actual
defects, due the complexity of detecting multiple defect types.

The quality of pictures in data collection should improve this result, increasing the
reliability of the software to help the operator.

The third KPI on reduction of number of training hours has been measured analysing the
number of visual defects detected during last year operations. An assumption has been
made, considering the outcomes gave from the senior operators during the test phase: to
consider a combination between training provided by the tool and training on-the-job
(depicted Figure 84).

Overalltraining process

Smart Vision Suite On-the-job

Figure 64 — Overall training process

Based on last year and examining the types of defects that occurred over a random 480-
hour timeslot (for example last part of the timeline), it was observed that only 4 out of 7
defect types were encountered during manual inspection phases. By utilizing the Al Smart
Vision Suite tool - which has been trained on dataset that included all 7 defect types -
(occurred throughout the year), the junior operator would be able to recognize all the
defects in the same training period that would otherwise have been encountered over the
entire year. This approach optimizes the training process not only in terms of the hours
spent to train in recognizing defects but also in terms of completeness, as all defect types
identified by the model would be available.
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Mr. 7 Defects
1year Current Training

Process

Nr. 4 Defects

Mr. 7 Defects

1 year Training process powered

by Smart Vision Suite
Nr. 7 Defects

Figure 65 - Training process comparison

From the comparison showed in Figure B5, it is evident that current training process
needed to be divided into multiple phases throughout the year in order to observe all the
defects identified and documented by quality procedures. With the same number of
training hours, however, the Smart Vision Suite tool would allow all defects observed during

the reference year to be reviewed.

By dividing the training process into two phases, the phase managed with the Smart Vision
Suite software enables a reduction of approximately 120 hours, as showed in Figure 66,
presenting all observed defect types and decoupling the training fram the availahility of
parts and, consequently, defects. The estimated reduction in hours was calculated based
on the number of inspected part volumes related to production planning and the
frequency of defects detected in the manual process.

Overalltraining process

450h Effectiveness of training:
On-the-job Nr. 4 defects
O\.I'Bl’ﬂ“ tra'"-“ngﬂrchss Time reduction
TITTTLLL] Effectiveness of training:
330h Nr. 7 defects
Smart Vision On-the-job

Suite

Figure 66 - Time reduction in Training process

Further optimizations could be considered if the tool were used for final and/or periodic
tests to verify the competencies acquired by operators.

Additionally, the reporting capabhilities allow the training phase to be decoupled from the
availability of senior inspectors, thereby optimizing the planning of training sessions.

However, this process remains simulated or, at most, combined with on-the-job training,
as current Airworthiness regulations do not yet permit the introduction of Al-based toals
for certifying an operator's competencies in the inspection domain.
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3.b Business Scenario 3

3.b.1 Full-scale implementation

3.6.1.1 Architecture

A\ Visual Inspection Al-based Self-learning
for junior Visual Inspectors.

Federated Machine Learning for Visual Inspection

Shopfloor Images. Inspector training Images

Location <n + 1> Location <n + 2>

£ | RE4DY Toolkit component .

Figure 67 - Implementation of the RA within the AVIO Aero pilot

Similarly to business cases 1 and 2, the toolkit components selected for business case 3
(Figure B67) revealed themselves capahle of effectively solving the planned tasks. In
particular, business case 3 leverages:

e Component 7: Decentralized data management & analytics
e (Component 9: ALIDA

e Component 14: KeyCloak

e (Component 24: Data Container

e Component 28: Analysis Center

Components 7 and 28 aim at solving the predictive quality tasks through Al techniques.
Component 9 - ALIDA - helps building and deploying pipelines which use Al models from
components 7 and 28. Component 14 - KeyCloak - integrates with the project's SSO to
provide access to ALIDA. The AVIO AERO-specific implementation of Data Container
(Component 24), consists of three modules: S3 Mountpoint, Dataset Aggregator and
Scheduler (Figure 68) that work together to provide access to the data source containing
the EDM data to be processed by components 7 and 28.
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Data Container

Figure 68 - AVIO Aero-specific Implementation of Data Container

These components (more details in the next sections) fit into the deployment architecture
of Figure B89 below. The architecture has remained unchanged, proving functional to
achieving its objectives.
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Figure 69 - Deployment architecture for AVIO Aero Business Scenario 3

3.b.1.1.1 Analysis Center (No 28) Architecture

Analysis Center, Number 28 of the Reference Architecture, as seen in Figure 87 is an
analytics component developed by Atlantis Engineering SA, able to support monitoring
and improvement of quality processes at AVIO AERO. The analytics algorithms were trained
based on data obtained from AVIO's EDM Machines and were integrated into the ALIDA
Federated Framework, thus offering the end user with a complete and unified solution. A
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Grafana dashboard was designed and set up in collaboration with the end user, used for
verification of the models and tool validation.

During the trials, the deployment of the core architectural components of the Analysis
Center includes the services in Participant, Aggregator, and Presentation
environments (see yellow-highlighted areas in deployment architecture - Figure 89)

More precisely, the EC2 machines in the Participant environment emulate the behaviour
of industrial assets deployed at distinct production sites - specifically, the Bielsko (PL) and
Pamigliano (IT) plants. Each environment hosts localized analytics components that have
been registered as ALIDA BDA applications and deployed as containerized applications. In
alignment with Federated Learning principles, each Participant is granted access only to
the data segments that were generated from its associated site. This data isolation
enforces strict privacy and accessibility constraints, and at the same time increases the
general knowledge of the final model.

The Aggregatar environment orchestrates the Federated Learning process by collecting
model updates and metadata fram the Participants. The service designed for this purpose
is included in the analytics component and has also been registered as an ALIDA BDA
application. During deployment, and to follow the Federated Learning principles, the
aggregator is deployed in an isolated environment that does not have access to
machining data but can only communicate and receive model updates from the
Participants.

Finally, the Presentation environment provides the interface for utilization of the final
trained model. The primary function of this environment is to render the model outputs,
visualize the derived insights, and communicate actionable information to end users. The
end user is expected to evaluate the model outputs from the interface hosted in this
environment and incorporate the tool into their routine operational workflow.

To ensure seamless integration with the existing infrastructure, each service to be
deployed is built into a dedicated Docker image, enabling a fully containerized
deployment. The following services are deployed across the different environments:

e Participant Environments: Docker images containing the analytic core services
of Analysis Center integrated with ALIDA are deployed. Deployment is managed
using Docker and Docker Compose, allowing the customization of environment-
specific parameters and providing an easy deployment phase. To adapt to the
AVIO AERO Cloud infrastructure, each participant communicates with Smartshop
infrastructure that stores all the collected data. Through this channel, data is
transferred to the participant as Parquet files. Then, by utilizing ALIDA services, the
data is transformed to CSV files that are afterwards given as input for
preprocessing and analysis to the developed analytics components.

e Aggregator Environment: A Dockerimage incorporating the analytics component
for model weight aggregation is deployed. Docker Compose is again used, enabling
users to configure various parameters related to the training process such as the
training epochs, the output directaries that store the final model parameters and
others.

e Presentation Environment: The presentation environment consists of multiple
Docker containers, each supporting a specific component of the end-to-end
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operational workflow. One container hosts the PostgreSQL database, another runs
a Grafana instance for data visualization and user interaction, and a third handles
data ingestion and preprocessing. Specifically, the third container needs
machining data from Parquet files, performs preprocessing steps, and stores the
processed data in the PostgreSQAL database. This data is then passed to a pre-
trained model for inference, with the resulting outputs also written to the same
database. The coordinated operation of these containers enables a fully
functional dashboard that visualizes both raw and machining data and model-
derived insights.

A successful and functional deployment of the above system requires careful
configuration of each service or container, ensuring that all parameters are properly set
to facilitate the following:

e Seamless and continuous communication between the Participants and the
Aggregator during training.

e Reliable operation of the services in the Presentation Environment, ensuring that
the database and dashboards are continuously updated with fresh machining data
and model outputs.

3.b.1.1.2 Prediction Pipeline (Presentation Environment)

Once trained, the Al models (more details in the next sections) power the anomalies
detector and are integral part of the following pipeline (Figure 70Q), which allows for the
periodic extraction of EDM data from the source as well as anomalies detection and their
visualization. The pipeline is used by both ATL and CNR.

ALIDA Pipeline

Data Container

B3 = Dataset
Mountpoint ~ Aggregator

"‘"’a L Scheduler (Y

Anomalies
Detector

Aggregated
EDM Data

S3 Bucket Pe— —
with a/ I
EDM Data m_> Ml || «--

% Parquet Database Visualization Quality Manager

predictions Trained ML Model

Figure 70 - Prediction workflow used by ATL and CNR

The flow begins with the tri component Data Container. The S3 Mountpoint docker service
creates an access channel to the S3 bucket, which contains parquet files with the EDM
data. S3 Mountpoint is a tool developed by AWS which, building on top of Linux FUSE
(Filesystem in User Space), allows for mounting the buckets onto the local filesystem
making their content available via regular directories. At that point, the Dataset
Aggregator combines the parquet files into a CSV file, which is finally sent to the
Anomalies Detector. The latter, processes the data, detects anomalies and stores them
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into a database. When the Quality Managers want to visualize the results, they access
the visualization tool, which reads the anomalies from the database and presents them
in a dashboard. The entire just described pipeline is periodically executed by a scheduler.
In addition to that, to allow data scientists with no access to the infrastructure to monitor
the status of the running algorithms, a madule periodically collects and sends their logs
via email.

3.b.1.2 A Models
3.b.1.2.1 Model Overview

Model architecture: The core of the model is an LSTM (Long Short-Term Memory)
Autoencoder (see Figure 71), designed for unsupervised learning tasks. The autoencoder is
trained to reconstruct input time-series signals. In this setup, reconstruction error serves
as the primary metric for anomaly detection—samples that the model fails to reconstruct
accurately (i.e., with high reconstruction error) are flagged as potential anomalies.

Goal: The objective is to identify anomalous behavior in machine-generated time-series
data by learning typical signal patterns during a normal operating regime. The model
operates in an unsupervised setting, requiring no labeled anomaly data. It relies on the
assumption that deviations from learned normal patterns are indicative of abnormal or
faulty machine states.

-

[ (&) ENCODER (O BOTTLENECK

RepeatVector
(window_size)

LSTM(64)

QOutput Data

{2} TRAINING

[ DECODER

Adam Optimizer

Dense(n_
features)

LSTM(32) LSTM(64)

Mean Squared
Error Loss

Figure 71 - LSTM-based Autoencoder architecture

Federated Learning Setup: To enhance data privacy and align with decentralized data
ownership constraints, a federated learning framework was adopted. Training was
distributed across five client nodes:

e Bielsko Facility. 2 client instances
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Pomigliano Facility: 3 client instances. Each client trains a local model on its own
dataset. After each local training iteration, model weights are shared (not the raw
data) and aggregated into a global model on a central server. This setup ensures
data remains local, maintaining compliance with data protection policies while
still benefiting from a collaborative training process.

Training Output Artifacts:

Serialized Model File: Contains the final aggregated LSTM Autoencoder weights,
ready for inference deployment.

Global Threshold File: Stores the anomaly score threshold used for flagging
anomalies. This is computed based on the global reconstruction error distribution,
assuming a contamination rate of 5%, i.e., this is a standard assumption in the
context of anomaly detection.

3.b.1.2.2 Data Preprocessing

Signal Selection Criteria: From the available sensor data, seven signals were selected
for training. Selection was based on three key criteria:

1.

2.

High Variance: Ensures that the selected signals carry meaningful dynamics.

Low Missing Value Rate: Minimizes the impact of imputation bias and increases
reliability.

Low Inter-Signal Correlation: Encourages diversity, reducing redundancy across
input features.

Missing Data Handling: Various imputation methods were evaluated for handling NaN
values. Forward fill (propagating the last observed value) was ultimately chosen due to its
neutral impact on signal continuity and overall stability across experiments.

Normalization: All input signals were normalized using standard normalization (z-score)
to ensure unifaorm scaling and accelerate training convergence.

Dataset Scope:

Machines Included: "AD4858", “AB4859", "AB4668", “AR4672", “AD4673"

Temporal Scope: Only the first available month of data per machine was used for
model training to emulate early-stage anomaly learning.

Windowing Strategy: Time-series data were segmented into fixed-size windows of
300 samples. Multiple window sizes were tested, but 300 samples offered the best
balance between context length and granularity.

3.b.1.2.3 Experiment Setup

Federated Training Process: Training was conducted using a federated learning framework,
where each clientindependently trains a local LSTM Autoencoder on its windowed dataset.
After local training epochs, model weights are communicated to a central server for
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aggregation. The model is trained to minimize the reconstruction loss, specifically Mean
Sqguared Error (MSE), with no requirement for labeled anomalies.

Anomaly Detection Procedure

Anomaly Score: Calculated as the reconstruction error of the autoencoder for each time-
step.

Thresholding: A post-training threshold was established by analyzing the global error
distribution and setting the cutoff at the 95th percentile, assuming a contamination rate of
5%, in line with standard practices in unsupervised anomaly detection.

Prediction Granularity. Anomalies are flagged at the individual timestamp level rather than
over intervals, ensuring high temporal precision.

3.b.1.2.4 Results & Evaluation

Unsupervised Consistency Check:_The trained model was applied to data from later
months to assess stability. Anomaly rates in these validation periods remained close to
the expected 5%, confirming that the model generalizes well and does not overfit to the
training window.

Supervised Validation (Synthetic Anomalies):_To assess model performance under
known anomalous conditions, synthetic perturbations were introduced:

e Noise with £30 magnitude was added to approximately ~X% of data points in a
subset of the selected signals.

e The model's ability to detect these perturbations was evaluated using supervised
metrics such as accuracy and F1-score.

e Results indicated strong detection capahility, demonstrating the model's
robustness and reliability in practical anomaly detection scenarios.

Figure 72 shows an example of the core outputs of the LSTM Autoencoder applied to a one-
hour time interval of a selected signal.

Signal Details: The example focuses on the ARCKILL signal, a key parameter monitored
during machine operation. The raw signal is plotted over a continuous one-hour window,
providing a clear view of its dynamics.

Overlayed Reconstructions: Alongside the ariginal ARCKILL signal, the corresponding
reconstructed signal, named ARCKILL_recon, is superimposed. The LSTM Autoencoder
generates this reconstructed output and represents the model's best attempt to replicate
the original time-series based on patterns it has learned during training. The visual
comparison between the original and reconstructed signal helps highlight any significant
deviations, which are potential indicators of anomalous behavior.

Anomaly Score Plot: Beneath the signal plots, the anomaly score is charted across the
same time axis. The anomaly score is computed as the recaonstruction error—typically the
Mean Squared Error (MSE) between the input and output vectors for each step. Elevated
anomaly scores suggest a poor reconstruction by the model, and therefore a higher
likelihood of anomalous behavior at that timestamp.
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Binary Anomaly Label: To enhance interpretability, a binary anomaly label is also
included in the plot. This label takes a value of 1 when the anomaly score exceeds a
predefined global threshold (calculated during the model evaluation phase based on an
assumed contamination rate), and zero otherwise. The label provides a straightforward,
threshold-based classification of time points as anomalous or normal, supporting
downstream analysis or alerting mechanisms.

The second visualization is provided to complement the anomaly detection output. This
graph spans the same one-hour interval and reports a smoothed average of the signal or
anomaly score, computed over a sliding window or rolling mean.

The purpose of this graph is to:

e (Offer a noise-reduced view of signal behavior, which can help identify gradual
trends or subtle shifts not immediately obvious in raw signal data.

e Enhance the visual clarity of underlying patterns and improve the analyst's ahility
to correlate anomalies with contextual changes in the signal.

Stats View

ARCKILL ARCKILL_recon anomaly anomaly_score

-0.623 -0.369 0.0173

Figure 72- Anomaly detection output example in two separate visualisations. On the left, the signal
is deemed as anomalous and, on the right, the specific anomalous pattern is accompanied by a
numerical indication of the anomaly score

3.b.1.2.5 Al Models results of Analysis Center
Model

The core component of the Analysis Center is a fully connected Autoencoder, designed
specifically for this use case. Given the unavailability of labelled data, an unsupervised
modelling approach was adopted. The Autoencoder consists of two primary components:
an encoder and a decoder. The encoder compresses the input time series data into a
lower-dimensional latent representation, capturing the essential patterns of normal
operational behaviour of the EDM machines. The decoder subsequently reconstructs the
input data from this latent representation. This architecture allows the model to learn a
compact and representative encoding of healthy operational states, serving as the basis
for anomaly detection.

Preprocessing

The data preprocessing pipeline was specifically designed to accommodate the
characteristics of the EDM datasets provided. The datasets ariginated from two sites and
encompassed a total of five machines, each exhibiting distinct operational behaviours.
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These differences necessitated tailored preprocessing procedures to ensure consistent
representation across machines.

Initial preprocessing included standard data cleaning techniques, such as the removal of
noise and handling of missing values. Afterwards, the data were synchronized in order to
obtain a unified dataset with the same intervals between all available timeseries. However,
the most critical step involved organizing the data into meaningful time windows that
preserved the intrinsic operational structure. After detailed examination, the data were
segmented into smaller units referred to as sequences. Each sequence represents a
small-time window during which the machine operates on a specific piece of equipment.

For each sequence, statistical features—including mean, standard deviation, and lagged
values—were extracted from non-static features to capture the temporal and operational
characteristics of the machine. These sequences, along with their derived features, were
then used as input to the Autoencoder for anomaly detection, where each sequence could
be classified as either healthy or anomalous.

The utilized features were primarily related to electric spark behaviour, as well as
operational and contextual metrics. The complete set of features used as input to the
maodel is in Table 9:

Table 9 - Complete set of features used as input to the model

Feature Description
PARTNUM Part number
TOOLNUM Tool number
EFFICIENCY Average efficiency of the current setting (%)
ARCVOLTAGE Bad sparks due to arc voltage by IPG generator (%)
DELAY Bad sparks due to delay by IPG generator (%)
SEQUENCETIME Sequence time
GOOD Good sparks by IPG generator (%)
MACHININGTIME Machining time
ARCKILL Actions taken on bad sparks killed by IPG generator (%)

SHORTCIRCUIT

Percentage of short-circuit sparks

MACHININGSPEED

Machining speed

SEQUENCE Seguence number
ESTOP Emergency stop
PARTJOBNAME Job name
EXECUTION Execution coding (e.g. ‘Active’, ‘Stopped’, ‘Interrupted’, etc.)

Training & Testing

During training, the Autoencoder is exposed exclusively to time series slices
corresponding to normal machine operation. The model learns to recreate these healthy
slices with minimal reconstruction error, effectively capturing the intrinsic dynamics and
carrelations present in the data. Optimization is performed to minimize the reconstruction

loss, which serves as a measure of the difference between the original input and its
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reconstructed output. By focusing solely on healthy data, the model inherently becomes
sensitive to deviations from normal behaviour, without requiring labelled examples of
faults or anomalies. The split used during training was 70/15/15 for train/validation/test set
accordingly.

For evaluation, new time series slices are fed into the trained Autoencoder. When the input
carresponds to healthy operation, the model is expected to reproduce the data with low
reconstruction error. Conversely, when a slice exhibits abnormal or faulty behavior, the
reconstruction error increases significantly due to the model's lack of prior exposure to
such patterns. To determine whether a slice is anomalous, a threshold was defined based
on the reconstruction error as follows:

b ReconstructionError — Mean(Overall Reconstruction Error) 3
° S tan dardDeviation(Overall ReconstructionError) -

Figure 73 - Reconstruction error formula

This formulation introduces a tolerance factor into the anomaly detection process,
allowing the method to account for natural variations in normal operational data. Slices
exceeding this threshold are classified as anomalous, whereas those below the threshold
are considered healthy.

Evaluation & Observations

Due to the absence of labelled data, the evaluation of the Autoencoder was conducted
using manually generated anomalies. These synthetic anomalies were created by
systematically increasing the values of features indicative of faulty operation, such as
ARCKILL, ARCVOLTAGE, and SHORTCIRCUIT, while simultaneously decreasing the values
of features representing normal operation, including GOOD and EFFICIENCY. This
approach allowed for controlled testing of the model's sensitivity to abnormal behaviour.
Additionally, we observed that model performance improved when training was restricted
to machines with similar operational characteristics. In particular, one machine from a
specific site (Pomigliano site, machine AQ4668) exhibited operational patterns that were
substantially different from the other machines, and including its data during training
reduced the model's ability to generalize. In future work, the model should also be
evaluated against anomalies that have been manually labelled or recognized by
operators to ensure alignment with real-world fault detection.

3.b.1.3 Applications
The Analysis Center can be conceptualized as an application composed of two primary
components: the model-related module and the user interface.

The model-related module is responsible for processing EDM data and producing anomaly
predictions. It accepts input in the form of CSV files, which are passed through a custom
preprocessing pipeline before being fed into the trained Autoencoder. The module outputs
a classification for each sequence, labelling it as either healthy or anomalous. All
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inference results are stored in a database, allowing subsequent access by users or
visualization tools. Additionally, the module incorporates a comprehensive logging
system, which records all processing steps, facilitating transparency and traceahility.

The user interface provides a means for users to monitor the Al system and interpret its
results through interactive tools, including:

e Interactive Dashboard: Grafana dashboards were developed to visually
represent model outputs. As illustrated in Figure 74 and Figure 75, the dashboard
includes both a table and a graphical panel. The table provides the following
information for each evaluated sequence:

e Machine: A unique identifier for the machine corresponding to the inference.

e Inference: The anomaly score assigned to the sequence. The column is color-
coded to indicate severity: low scores in green, medium scores in yellow, and high
scores in red.

e Sequence Start: Timestamp marking the beginning of the data sequence.

e Sequence End: Timestamp marking the end of the data sequence.

e Sequence: A hyperlink enabling the user to isolate and examine the data for a

specific sequence, facilitating focused analysis of individual cases (Figure 75).

o S A AR R T e WAL v v W R A N e oW Gt ate xS

Figure 74 - Interactive dashboard for analytics visualization

Figure 75 - Interactive dashboard for a specific sequence
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Logging System

Each component of the Analysis Center logs its operations to provide transparency and
ensure robust monitoring. Logs include details on input files being processed, the
anomaly scores computed for each sequence, and confirmation of completed
processing, indicating readiness for subsequent files. The logging system also captures
errors, such as unsupported file formats, thereby supporting efficient troubleshooting

and operational reliability.

Figure 768 - Presentation environment logging mechanism

3.b.1.4 Key challenges and solutions for full-scale implementation

3.b.1.4.1 Challenges of Analysis Center

Although the developed component is fully functional, an additional effort has been made
to address a couple of challenges in order to improve the scalability of the
implementation:

e Participants: In a full-scale deployment, participants should be hosted on the
edge - directly on aor near the machinery equipment - rather than in cloud-based
environments. This edge deployment would eliminate unnecessary data transfer
over external networks by enabling local processing, thus reducing latency and
potential security risks. Additionally, it is essential to ensure that each edge device
has sufficient computational and memory resources to handle the potentially
intensive workload required by federated learning tasks, which may vary
depending on the final goal and model complexity.

e Aggregator: As the number of participants increases, the aggregator must
communicate efficiently with all edge nodes to ensure timely model updates. While
secure channels are already in place from the utilized federated learning
framework (Flower framework uses gRPC channels), maintaining high-speed
communication becomes a key scalability challenge. To address this, the system
should minimize synchronization delays by optimizing data transfer protocols,
reducing payload sizes, and possibly employing parallel or asynchronous
aggregation strategies.

In addition to participant and aggregator-oriented improvements, a full-scale
implementation would require continuous monitoring of edge participants. This includes
detecting performance bottlenecks, identifying node failures, and addressing connectivity
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issues. Robust observability mechanisms should be implemented, including real-time
health checks, resource usage tracking, and automated alerting.

Beyond monitaring, the system should also include fault-tolerant mechanisms to handle
edge node failures smoothly and without disrupting the overall federated learning
process. This could involve strategies such as temporarily excluding unresponsive nodes,
rescheduling training rounds, or using asynchronous updates to maintain network
stability and model convergence.

3.b.2 Industrial trials of the pilot

3.b.2.1 Testing procedure and Barriers

The main barrier encountered while deploying and testing the tools on the Avio Aero IT
infrastructure was basically the same of previous pilots: the need to be compliant with the
strict cyber security regulations. Access to the virtual machines and data storage could
only occur from within the Avio Aero network and with Avio Aero-caompliant computers. Fram
the laptop with personal SSO credentials was possible to access the Avio Aero network
through a VPN and to the specific virtual machines through CyberArk.

3.6.3 Final KPIs monitoring and validation

3.b.3.1/ndustrial Outcomes and Lessons Learned
The Industrial Pilot implementation for Business Scenario 3, assumes different business
key factors:

e Cost Reduction: Predictive quality minimizes costs associated with
defects, rework, and warranty claims by identifying issues early in the
process.

e Efficiency Gains: 0Optimizing production processes and resource
allocation through predictive insights leads to improved operational
efficiency.

e Risk Mitigation: Early detection of quality issues reduces risks related to
product recalls, compliance violations, and customer dissatisfaction.

e (Competitive Advantage: Implementing predictive quality enhances
product reliability and consistency, differentiating the business in the
market.

e (Customer Satisfaction: Delivering high-quality products consistently
builds customer trust and loyalty, driving repeat business and positive
brand reputation.

e Data Utilization: Leveraging advanced analytics and machine learning to
extract actionable insights from production and quality data maximizes the
value of existing data assets.

e Scalability: Predictive quality systems can be scaled across multiple
production lines or facilities, ensuring consistent quality standards
globally.

Based on models results, an outcome was the low variety of signals in dataset exposed by
the equipment which is translated in a not exhaustive description of the overall process.
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The upgrade of software version embedded on the equipment would enrich the signals,
but this implies the certification of the entire process with extra costs and long times for
the business.

In addition, despite that EDM process between equipment is provided on the same product,
it could be related to different operations in production cycle based on Part Number: this
could be a limitation in terms of predicted parameters process configuration around all
equipment. This limitation is strictly related to the production management in Avio Aero,
having a logic model of production line: an equipment warks different Part Numbers, and
the production cycle can consider the same equipment for different cycle operations
depending by the Part Number. The lesson learnt is that to maximize the effectiveness of
federated prediction models, equipment that provide same operations across the sites
must be considered.

An additional outcome is the unavailability of direct timestamp correlation between
process deviations coming from equipment signals and product quality during inspection
processes, that happen later in production cycle. This is translated in missing connection
between predicted quality feedback coming from models and quality losses contribution
in Overall Effectiveness Equipment calculation. This not depending by the pilot
implementation, but it is strictly connected to the overall process that does not include
the quality inspection at the same time of the EDM operation. If in the next future a
traceability correlation will be introduced across different operations, so between signals
from equipment and quality inspection in this case, the quality contribution can be
counted in the OEE and productivity of the equipment.

3.6.3.2 KPl Measurement and Performance Evaluation
The key perfarmance indicator for Pilot 3 is reported in Table 10.

Table 10 - Pilot 3 KPIs

Expected date

BUSINESS . Initial M18 | Expected of
ID . DESCRIPTION Unit* .
Indicators value Value | value achievement*

*

Data collection
could implement

both Predictive Before 24
. Quality and months after
Efficiency of L
Predictive the
1 OEE on EDM . OEE 75% TBA +1% . .
. Maintenance by implementati
machines. . .
intervening on 2 on

of the 3 indices
that calculates
OEE
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The Performance evaluation has been addressed through the OEE calculation based on
data collected on last year. Additionally, to the signals managed by the Al models
developed andimplemented for this Pilot, the signal on the machine status (exec) has been
caollected. The value assumed by the signalis than classified as uptime or downtime in OEE
calculation. More details are listed in Table 11:

Table 11 - Signal details

Signal Description Unity

READY, ACTIVE,
exec State of Machine INTERRUPTED,
STOPPED

OEE is expressed as a percentage and is calculated by combining three factors:

e Availability: The percentage of scheduled time that the equipment is available
to operate.

e Performance: The speed at which the equipment operates compared to its
designed speed.

e Quality: The percentage of good parts produced compared to the total parts
produced.

The OEE calculation splits the contribution loss depending by the classification of different
values of signals. The OEE formula is:

OEE = Availability x Performance x Quality

Where:

Availability = Operating Time / Scheduled Time
Performance = (Ideal Cycle Time x Total Parts) / Operating Time
Quality = Good Parts / Total Parts

Table 12 lists the classification adopted for Machine Status signal:

Table 12 - Machine Status Signal

Unti Downtime
ime
B (Availability/Performance)
READY, INTERRUPTED,
ACTIVE

STOPPED

An additional signal related to Cycle Time is used for Performances losses calculation.
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As shown in Table 12, the downtimes for EDM equipment include only Availability and
Performances losses, assuming there are no quality losses. This is a strong assumption
due the restricted availability of data and for the missing direct correlation between status
signal and quality inspection (as after operation in the production cycle).

3.b6.3.3 Final KPl Assessment and Business Impact

Compared to the OEE values calculated at the beginning of the project, focusing the
performance analysis on the last year, the initial OEE values for each equipment (both for
the Paomigliano and Bielsko facilities) are significantly lawer. This was due to a decrease in
production volumes, resulting in reduced utilization in terms of the capacity of the
selected machines. Therefore, the OEE percentage increase is assessed based on this

assumption.
Table 13 depicts the performance analysed for the KPI of pilot 3.

Table 13 - Pilot 3 Final KPls

Expected date

BUSINESS . Initial Expected | of Current KPI
ID ] DESCRIPTION Unit* .
Indicators value value achievement* | Assessment

*

Data collection
could implement

both Predictive Before 24
- Quality and 75% months after
Efficiency of L
Predictive (14%- the 11%-73%
1 OEE on EDM . OEE . +1% . .
. Maintenance by 45% in implementati | (+1+20%)
machines. . .
intervening on 2 2025) on

of the 3 indices
that calculates
OEE

The OEE measured at the beginning was higher than the value in 2025, depending by the
contribution in Availability and Performances losses. The current value is lower: 14%-45%
in 2025, depending by the equipment). The expected OEE value has been evaluated in
terms of absolute increase, as already defined in Table 13.

The process engineer analysed the feedback provided by the algorithms using the
dashboards developed by Atlantis and CNR showed in Figure 77, validating the Al models
while simultaneously acting on the process when the deviation was confirmed.
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Figure 77 - Ul Dashboard: Process Monitoring

Figure 78 - Ul Dashboard: Anomaly Detection

When an anomaly is notified and confirmed by the operator (see Figure 78), the process
engineer promptly modifies the process parameters whenever possible, avoiding
downtime or (in a still very preliminary phase) a potential impact on the quality of the
processing and, consequently, the final product.

By analysing the OEE trend and focusing on the last month (when the tool has been tested
by process engineers), it can be observed that the trend isincreasing, with animprovement
that significantly exceeds 1%, for some equipment.

Below (Figure 79 to Figure 82) are shown the OEE trends and the individual contributions of
losses for two different equipment, in Pomigliano and Bielsko respectively.
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Figure 79 - Equipment AO4858 (Pomigliano) - Losses trends
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Figure 81 - Equipment AO4673 (Bielsko-Biala) - Losses trends
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Figure 82 - Equipment AD4673 (Bielsko-Biala) - OEE trend

As previously mentioned, the increase in OEE is not directly imputable to an impact on
quality, as it has been assumed that quality is always ensured without contributions from
quality losses. Process optimizations and production increases have impacted on the
cantributions of Availability and Performance. The management of Al model feedback on
the process may have contributed to reducing and optimizing losses, thereby impacting
the increase in OEE value.

The company's current objective is to work on the traceability of the parts processed within
the production cycle in order to properly manage the contribution of quality losses in the
OEE calculation, achieving a value that is more realistic and closer to the actual process.
In this way, the Al models used, in addition to impacting Availability and Performance
losses for the reasons described above, will have a direct impact on optimizing the
contribution of Quality losses, improving both the efficiency of the plant and the quality of
the process itself.
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4 Performance Monitoring Framework

4.1 Introduction of methodology (6P-
Performance Pillar]

The BPs Migration Model functions as a strategic framework designed to support
organization particularly those in the manufacturing sector in assessing both their current
level of digitalization and their target maturity across six key dimensions. Additionally, it
offers a structured means to monitor progress along a digital transformation rcadmap?®.

When an organization becomes aware of its digitalization gaps, two main scenarios may
arise:

e In the first, the organization is already involved in a project that targets specific
aspects of its digital strategy. In such cases, the implementation roadmap is often
shaped by the project's scope, and the B6Ps model provides a mechanism to
evaluate the progress and impact of the ongoing initiatives.

e In the second scenario, the organization has recognized the gaps but has yet to
address them. Here, the model helps by identifying areas for potential
impraovement, thus guiding strategic planning.

To fulfill its purpose, the model performs a comprehensive analysis of six caore pillars that
reflect essential components of the production environment. It is built on the
understanding that successful digital transformation must go beyond technical
capabilities and include what are referred to as “socio-business” dimensions. The six
pillars—Product, Process, Platform, People, Partnership, and Performance—are grouped
into three technical and three socio-business categories, offering a balanced and
integrated perspective for evaluating digital transformation efforts, as Figure 83.

: ' PRODUCTS ' PROCESS

TE;.[‘.LHLTXIF({:?L Digital Smart Products and Digital Factories and Production

Services Processes

' PEOPLE ' PARTNERSHIP ’PERFORMANCE
2

SOCIO-BUSINESS Digital Skills and Digital Ecosystems and Digital Business
PILLARS Professions Innovation Hubs Models

Figure 83 - The 6Ps Model

5 https://re.public.polimi.it/retrieve/handle/11311/1206091/715004/1-s2.0-
S2212827122001068-main.pdf
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Within the scope of this work package, particularly Task 5.4, titled “Pilot Area KPI Collection
and Benchmarking Data”, the focus is placed on the Performance dimension of the BPs
model. This pillar plays a critical role in examining how indicators within manufacturing
environments are defined, measured, and monitored. Importantly, the emphasis of this
dimension is not on whether indicator values themselves have improved, but rather on the
extent to which measurement practices have become more precise and reliable. The
Performance dimension is structured into six interrelated areas: Operational/Technical,
Economic, Environmental, Social, Product-Service Lifecycle, and Supply Chain. Together,
these areas offer a comprehensive lens through which performance-related digital
capabilities can be assessed. To determine a company’'s level of digital maturity,
responses to the assessment are mapped onto a structured five-level maturity scale,
enabling a standardized and comparative evaluation across different pilot sites.

e Initial: in this stage, the dimension is poaorly digitized or not digitalized at all.
Processes are poorly contralled, if at all, and managed reactively.

e Managed: at this level, some aspects of the organization are digitalized and
controlled, such as through a pilot or an angoing digitization project. Processes are
partially controlled and managed based on experience.

e Defined: in this stage, digitalized activities are defined and implemented
throughout the organization. Processes are planned and adhere to good practices
and management procedures.

e Integrated: processes are fully planned and implemented, with a focus on
infarmation exchange, integration, and interaperability across applications. Best
practices and common standards are present.

e Exploited: at this highest level, the arganization fully exploits the dimensions.
Processes are digitally oriented and built upon a robust technology infrastructure.
The organization demonstrates high potential for growth and supports decision-
making effectively.
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Figure 84 - 6Ps Model - Performance dimension

Given that the BPs method serves as a comprehensive monitoring framewaork, its structured
maturity levels enable a standardized and replicable assessment across multiple pilot
sites. This is particularly valuable for supporting the generalization of impact KPIs beyond
isolated factory-levelinsights. The Performance dimension, in particular, provides a robust
basis for evaluation, as it encompasses a wide range of critical areas (shown in Figure 84).
This comprehensive scope aligns well with the objectives of the task 5.4, which aims to
facilitate a generalized and integrated impact assessment across the entire life cycle of
the value network.

Moreaver, the flexibility of the BPs model makes it especially suitable for incorporating
technical elements within the analysis. By integrating components such as Process
Planning and Preparation, Data Sharing and Integration, Federated Learning and
Al Models, and Progress in Integration, the model is also aligned with the technical
goals of the wark package. This integration not only enhances visibility and measurement
but also strengthens the framework's capacity to monitor production performance and
effectively generalize impact KPIs across diverse contexts.

In this regard, the newly analyzed aspects have been formulated and structured as it
follows:

e Pilot business processes: The primary objective of this section was to evaluate
the current status and effectiveness of process planning and preparation
activities within the pilot implementations. By asking respondents to rate progress,
identify achieved milestones, and outline encountered challenges.
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e Data Sharing and Integration: The questions aimed to capture the level of

technical progress in connecting and synchronizing data sources, identify specific
barriers and limitations encountered during implementation, and evaluate the
perceived effectiveness of the Data Container in supporting data exchange and
digital service enablement. Additionally, the survey sought to collect evidence of
tangible benefits derived from its use, such as improved transparency, Cost
savings from streamlined data processes, and data-driven decision-making
capabilities.

e AlModels and Federated Learning: This section aimed to measure the perceived

advancement in adoption, assess how effectively Federated Learning has
contributed to enhancing Al model performance, and identify tangible benefits
such as improved model accuracy, enhanced data privacy, and reduced data
transfer costs. It also sought to uncover key barriers to adoption, including
technical, organizational, and integration-related challenges, and gather
additional qualitative insights through open-ended feedback.

e Progress in Integration: This section aimed to capture both the guantitative

status of integration efforts and the specific achievements realized, such as data
synchronization, digital twin development, and predictive maintenance
implementation. It also sought to identify common barriers and operational
challenges that may hinder progress, including technical, organizational, or
resource-related issues. Finally, the open-ended question was included to collect
any additional qualitative feedback from pilot teams.

The methodology is structured around five key steps; each aligned with the principles of

the BPs framewark and tailored to the specific activities of each pilat and the objectives of

Task 5.4:

1. Design and preparation of the survey, guided by the 6Ps methodology and adapted
to reflect the context and operational realities of each pilot site.

2. ldentification of the AS-IS profile, representing the initial digital and organizational
maturity of the manufacturing enterprise through structured survey. (beginning of
the project)

3. lIdentification of the TO-BE profile, outlining the targeted or expected future state
of the enterprise in terms of digital transformation.

4. Identification of actions to bridge the identified gaps., which may include
collaboration with project partners and the continuous maonitoring of pilot-specific
activities throughout the project timeline.

5. Assessment of improvement progress, conducted through structured interviews
with pilot leaders to evaluate the current level of advancement. (last months of the
project)

It is important to note that this methodology does not aim to directly evaluate KPIs; rather,
it focuses an assessing the overall production performance of the company in the context
of its digital transformation journey.
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4.2 Analysis of the Performance Pillar (AS-
1S) - Survey

This section presents an analysis of the first iteration of survey responses (Annex 1), The
primary objective of this survey is to capture the initial state (As-Is) of digital and
organizational maturity within the manufacturing enterprise, while also identifying their
future expectations (expected To-Be) and targeted development goals.

Following sections represent collected responses from the two main pilots under WP5S Avio
and GF. For the remaining two pilots, AVL and VW, relevant infarmation can be found in
Deliverable D4.3.

As outlined earlier, the analysis is divided into two main components. The first focuses on
the six care aspects of the Performance dimension, offering an interpretation of responses
related to each area. The second addresses the additional questions that were
specifically developed to align with the project and work package requirements, along with
their carresponding analysis and interpretation.

4.2.1Integrated Machine Tool Performance Self

Optimisation Pilot (GF)-AS-1S
As depicted by Table 14, the partner had been provided “N/A” for four of the six categaories:
Operational-Technical, Economic, Environmental, and Social, leaving both AS-IS and TO-
BE levels marked as Not Available. This indicates that, at the initial stage, these areas
either have not been evaluated internally or are not yet in scope for structured
measurement within the organization.

For the Product-Service Lifecycle, the partner repaorted a current maturity level of
'Integrated’, meaning that they already include Life Cycle Costing (LCC) and Environmental
Life Cycle Assessment (LCA) in their analysis, aligning with circular economy principles.
Looking ahead, their goal is to reach the "Exploited" level, which involves extending the
assessment further to include Social LCA, contributing to broader sustainability and Green
Deal objectives.

In terms of Supply Chain performance, the partneris currently at the 'Integrated" level and
intends to maintain this position moving forward. This reflects an established capability in
measuring physical, economic, and sustainability-related KPIs, suggesting that the
company already has a comprehensive approach in place for evaluating supply chain
activities. The absence of change in the TO-BE status may indicate that current practices
are seen as adequate or already aligned with strategic goals.

Table 14 - Summary of results of Ist Iteration GF

Performance Dimension AS-IS TO-BE
Operational - Technical N/A N/A
Economic N/A N/A
Environmental N/A N/A
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Social N/A N/A
Product-Service Lifecycle Integrated Exploited
Supply Chain Integrated Integrated

Pilot business processes: The partner rated the progress in achieving objectives for

process planning and preparation as "Good", and additionally, among the key milestones
achieved, the partner highlighted the integration of Toolexpert into the CAD/CAM
environment and the implementation of a Virtual Environment, marking important steps
toward digitalizing and optimizing process planning workflows. However, a significant
challenge encountered was the full implementation of data exchange across all partners,
which remains difficult due to the complexity and variability of the environments involved.

Data Sharing and Integration: The partner rated the progress in connecting data
sources and synchronizing data at the pilot site as "Good progress’, reflecting a positive
progress in the implementation of data integration activities. A challenge noted in this

process was the presence of issues with data synchronization, indicating that while
caonnectivity is being established, maintaining consistent and aligned data flows remains
an area for improvement. Despite this, the partner evaluated the Data Container as “Very
effective” in enabling data exchange and service implementation. A key benefit identified
was the ability to implement new digital services, demonstrating how the Data Container is
supporting the partner's broader digital transformation objectives.

Al Models and Federated Learning: The partner reported "Good progress' in leveraging
Federated Learning at the pilot site, indicating that the initial implementation is moving

forward as planned. However, they rated the effectiveness of Federated Learning in
enhancing Al models as "Somewhat effective”. Additionally, a key benefit identified was
enhanced data privacy, reflecting the strength of Federated Learning in enabling
distributed Al without centralizing sensitive information. However, the partner also noted a
key challenge in the integration of Federated Learning with existing systems, which may
require additional alignment of infrastructure and processes.

Progress in Integration: The partner rated the progress in integrating the RE4DY

components and achieving the planned objectives at the pilot site as "Good', indicating
steady progress in aligning system components and digital tools with project goals.
Among the key achievements, the partner reported the successful connection of data
sources to the Data Container and the completion of significant data synchronization
tasks, both of which are essential steps toward enabling seamless data flow and
interoperability across systems. However, the partner also identified technical difficulties
with data integration as a major challenge, suggesting that despite progress, further work
is needed to ensure reliable and efficient integration of components within the existing
infrastructure.

4.2.2 Multi-Plant Predictive ZDM Turbine Production Pilot
(AVIO)-AS-1S

Respaonses on performance’s aspects, reported in Table 15 and Figure 85, revealed a clear
understanding of diagnostic practices in several areas, while also highlighting the
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ambition to advance toward predictive and prescriptive capabilities supported by digital
tools and Al. In terms of Operational and Technical performance, the company currently
operates at a Defined level, meaning KPIs are well-structured, and efforts are made to
understand the causes of perfarmance trends. However, the expected target is to reach
the Exploited stage, where AI/ML models and optimization tools enable simulation-based
decision-making. Similarly, for Economic performance, the enterprise seeks to evolve from
its current Defined stage, focused on causal analysis to an integrated level, where
predictive models and financial forecasts guide proactive strategies. The Environmental
and Product-Service Lifecycle dimensions are currently positioned at a Managed level,
with efforts directed toward increasing structure and diagnostic capability (Defined).
Regarding Social performance, the company reports a stable Defined level both in the
current and future state, suggesting that existing methods for monitoring welfare and
social indicators are satisfactory. Finally, Supply Chain performance is also currently at a
Defined level, where baoth physical and economic indicators are measured. The desired
shift to the Integrated stage reflects an intention to incorporate sustainability metrics into
the evaluation framework, enabling a broader and more responsible performance
assessment.

Table 15 - Summary of results of Ist /teration Avio

Performance Dimension AS-IS TO-BE
Operational - Technical Defined Exploited
Economic Defined Integrated
Environmental Managed Defined
Social Defined Defined
Product-Service Lifecycle Managed Defined
Supply Chain Defined Integrated
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Figure 85 - Radar chart - Performance Avio

Pilot business processes: The partner rated the current status as “Good”, indicating a

solid progress in aligning operational activities with the expected project outcomes.

In terms of key milestones achieved, the partner reported several notable
accomplishments. These include the establishment of a shared set of business
requirements, the development and execution of trial solutions leveraging the Testing and
Experimentation Facility (TEF), and the definition of the architectural design for the
intended solution. Additionally, an important operational step, an on-premises data
acquisition campaign was successfully completed, providing the foundational data
required for further implementation and integration efforts. Despite these advancements,
the partner alsao highlighted a number of challenges and bottlenecks encountered during
implementation. Twao main issues were noted: first, the cybersecurity requirements
associated with deplaying the solution in an on-premise environment, particularly in the
caontext of scaling up; and second, the difficulty of fitting the reference architecture into a
realindustrial setting while ensuring full compliance with industry-grade standards. These
challenges underscaore the complexity of translating architectural framewarks into
practical, secure, and scalable industrial applications.

Data Sharing and Integration: The partner rated the progress in connecting data

sources and synchronizing data at the pilot site as "Good progress'. However, the main
challenge encountered during the data sharing and integration process was identified as
difficulty connecting data sources. This indicates that while the overall progress is
positive, technical barriers still need to be addressed to achieve seamless connectivity
across all systems. Regarding the effectiveness of the Data Container in enabling data
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exchange and service implementation, initially the partner indicated it was "Not very
effective" while in the next phases, the Avio Aero-specific implementation of Data
Container enabled interoperability between the two data formats at data source (edge)
that required by the analytics components. However, a key benefit observed from using
the Data Container was improved data visibility and transparency.

Al Models and Federated Learning: The partner rated the progress in leveraging

Federated Learning at the pilot site as “Good progress”. However, they assessed its
effectiveness in enhancing Al madels as “Neutral”, suggesting that tangible improvements
in model performance have yet to be realized. Consistent with this, the partner reparted
“No significant benefits observed” so far from implementing Federated Learning.
Interestingly, despite the limited perceived impact, the partner indicated “No challenges
faced"”. It was further noted that any technical aspects or limitations should be addressed
in coordination with the partners directly involved in the development of the Al models.

Progress in Integration: The partner rated the progress in integrating the RE4DY

components and achieving the planned objectives at the pilot site as "Good". However,
none of the listed key achievements, including data container connection, predictive
maintenance implementation, digital twin development, or data synchronization have been
fully reached at the current stage. Instead, the partner clarified that the team is currently
working on deploying all these solutions into the production environment, indicating that
implementation is stillin progress. The main challenge encountered during integration has
been related to technical difficulties with data integration. Additionally, the partner noted
that the challenges reported in this section are consistent with those mentioned earlier in
pilot business process section.

4.3 Analysis of the Performance Pillar (TO-
BE) - Interview

As part of the final evaluation phase, a follow-up interview was canducted with the pilot
representative to assess the latest progress in perfarmance dimension, and to reflect on
the achievements and challenges reported in the initial survey. Below are the responses
obtained during the interview, which will be presented and analyzed on a section-by-
section basis.

In addition, a structured interview was conducted to assess progress on KPIs (see Annex
2] beyond the factory-level pilot. The guestions focused on performance trends,
operational changes, data quality, operator feedback, challenges & mitigations, and future
priorities, in line with the objective of generalizing impact insights at the pilot area level.
This qualitative approach complements the quantitative KPI data collected during the
project and supports broader communication and replication goals across the RE4DY
value network. The interview content directly aligns with the expectations outlined in the
task description, which emphasizes monitoring and evaluating transformed and blended
data outputs, and extracting generalizable insights. By focusing on performance evolution
since M24, data reliability, operational feedback, and lessons learned, the interview offers
a comprehensive view of the pilot's operational performance.
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4.3.1Integrated Machine Tool Performance Self-
Optimization Pilot (GF) - TO-BE

Pilot business processes
e Progress Update on Process Planning and Implementation

The partner confirmed that the progress remains at a “Good” level, as previously reported.
They emphasized that a complete set of application developments has been
implemented, each corresponding to the four business processes defined in the project
deliverables. Despite experiencing some delays in implementing the last set of business
processes, the partner confirmed that these components are now ready and in place. Key
milestones achieved include the successful development and deployment of applications
covering process planning, preparation, and monitoring, specifically those leveraging Al.
The current focus, as the project enters its final phase, is on testing all integrated
components and preparing for the final update of KPIs, in alignment with the original
objectives outlined in the trial handbook.

Data Sharing and Integration
e Data Container Implementation: Progress, Challenges, and Future Directions

In the interview, the partner reaffirmed their earlier assessment of "Good progress' in data
integration, particularly in connecting and synchronizing data with the Data Container.
When asked about the main technical and organizational challenges, the partner
emphasized the complexity of collecting data from a diverse range of sources, including
machines, tools, PLM systems, and software applications. Despite these challenges, they
successfully caonsolidated this data, enabling enhanced collaboration among pilot
participants such as Siemens, Innavalia, Metrology, Unimetric, GF, ATLANTIS, and others.
Regarding the “data as a product” concept and its relevance for data sharing in a
marketplace, the partner acknowledged the potential for sharing structured data
externally, but noted that this would require well-defined agreements amaong
stakeholders. Internally, agreements are already in place, making the concept feasible.
However, broader external sharing through a data marketplace (such as the one proposed
by ATOS) would need further discussion and clarification on legal and commercial
frameworks. The partner described their experience with the Data Container as very
effective, highlighting its critical role in enabling data synchronization and digital service
implementation. They noted that without the container, these services could not have
been deployed. The unified APl and access control features were considered highly
convenient, though the most critical and challenging aspect remained the
synchraonization and structuring of data from different systems. They recommended that
future improvements could focus on standardizing data synchronization and structure,
which they linked to concepts like Digital Product Passports. Enhancements in this area
would help scale the Data Container's use across pilats and other industrial contexts.

Al Models and Federated Learning

e Federated Learning Deployment: Progress, Integration, and Predictive Use Case
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During the interview, the partner provided additional insight into the implementation and
effectiveness of Federated Learning in their pilot. They confirmed their previous evaluation
of "Good progress', and noted that enhanced data privacy was a key benefit. However, they
also reiterated that integration with existing systems posed a notable challenge. The
partner explained that Al models were developed and trained using the RE4DY framework
in close collaboration with CORE and ATLANTIS, who supported the implementation of
Federated Learning architecture. One of the key challenges was harmonizing different
technical requirements from multiple partners. Through joint efforts, a standardized and
integrated Federated Learning solution was achieved, which the partner identified as one
of the key deliverables of the project. Although no formal benchmarking data was yet
available, the partner expects that aggregating data across systems in a federated
manner will enhance model performance and scalability. The primary business use case
where Federated Learning was applied focused on the prediction of tool lifetime in machine
operations, marking a significant application of Al within the production process.

Progress in Integration

e RE4DY Framework Integration: Technical Achievements and Pathways to
Standardization

In the interview, the partner confirmed the previously reported 'Good progress' in
integrating RE4DY components, including the Data Container, Federated Learning, and the
Data-as-a-Product concept. They emphasized that these elements were all successfully
implemented in the pilot and played a crucial role in enabling the technical achievements
of the use case.

The partner explained that integration across layers of the RE4DY reference architecture
was made possible through strong collaboration with partners such as CORE, ATLANTIS,
and Siemens. However, one key challenge was the lack of standardization among systems
and controllers used by different partners. Extracting consistent information from diverse
machine controllers (e.g., Siemens and others) required additional effart to harmonize data
cantent, not just format. The partner identified the standard definition of data structures,
such as a Digital Product Passport, as a major learning outcome and an essential step for
future scalability. They also highlighted the potential value of including mapping tools in
the RE4DY architecture to automate the conversion of data from various controller formats
into a standardized structure suitable for the Data Container or data marketplace. From a
business perspective, the partner noted that the objectives of the pilot could not have
been achieved without the RE4DY framework. Access to harmonized, cross-partner data
enabled the delivery of accurate, valuable KPI predictions, which will bring long-term
benefits as these solutions are further industrialized and brought to market.

Comparisan with Initial AS-1S Results

In the initial analysis, the partner assessed their maturity as "Integrated" for both the
Product-Service Lifecycle and Supply Chain dimensions. The ambition for the Product-
Service Lifecycle was to reach the "Exploited" level, expanding from economic and
environmental indicators (LCC and LCA) toward incorporating Social LCA and mare holistic
sustainahility metrics. In the final interview, the partner reaffirmed that data integration
and synchronization across multiple systems (e.g., Siemens, Metrolagy, Innovalia) had
been achieved through collaboration and structured data exchange, particularly within
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the data container and federated learning frameworks. These integrations laid the
foundation for enhanced product and service traceability and predictive performance
monitoring, aligning with the target of reaching an "Exploited" level in the Product-Service
Lifecycle. While full implementation of Social LCA may still be evolving, the foundational
steps to enable it, such as harmonized data structures and cross-platfarm
interoperability, have been put in place. For the Supply Chain dimension, the partner
maintained its 'Integrated" level. However, the interview suggests consolidation and
strengthening of this status. This includes a growing ability to track lifecycle and
operational metrics across supply chain actors, which reinforces their readiness for
broader ecosystem-level integration.

4.3.2 Integrated Machine Toal Performance Self-
Optimization Pilot (GF)-KPI Discussion

Performance Overview & KPI Progress

The project status is described as good. GF planned a set of applications aligned to four
business processes and, despite delays, the last applications have now been
implemented, are being rolled out, and are entering a phase where all components are
tested. The focus for the closing months is to update the KPIs based on these integrated
applications. The team cannot yet provide precise uplift figures relative to Month-24
because the past year was devoted to completing the data-collection campaign and
advancing the implementation to something market-ready; KPI re-evaluation is therefore
scheduled for the end of the project, which is one reason a project extension was
requested. Within the business scope, a central use case is prediction of tool lifetime for
machines, but quantitative effects are not yet reported.

Operational Insights

Over the last year the most relevant operational change was enabling data access for two
distinct families of CNC controllers. This decision broadened coverage to what the team
believes is roughly eighty percent of the market but required duplicating integration
efforts, which had not been anticipated at the outset. There were na specific incident-level
disruptions affecting performance beyond project delays; GF notes organisational
restructuring that slowed implementation and, in turn, delayed KPl updates and motivated
the extension request.

Data Collection & Accuracy

The consortium invested early effort in @ common data model, and GF reports that this
upfront alignment avoided surprises in collection and limited data-quality issues. Data
collection revolves around machine data made available through an edge-and-cloud
setup. GF highlights an effective edge computer and an Azure-based toolchain, with
applications packaged as Docker containers to structure the architecture and
deployment. This combination gave the team flexibility to operate at edge and cloud levels
as needed.

Operators’ Feedback
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Operator engagement was most intense during the training phase for the
machine-learning components. Operatars’ work practices, such as leaving machines
running overnight or through weekends, required the project to adjust data-collection
procedures and labelling so that training data remained accurate and usable. Without this
back-and-forth, the training phase would not have been feasible.

Challenges and Mitigation

The multi-source synchronisation problem was the dominant technical challenge,
compounded by heterogeneity across controller vendors and partner systems. GF and
partners mitigated this by building the data container-based integration, establishing the
edge-cloud setup, and standardising enough to proceed with training and application
rollout. Organisationally, GF's internal restructuring introduced delays that slowed
implementation and postponed KPI updates; the project extension provided time to finish
integration and shift attention back to KPI evaluation.

Lessons Learned

The pilot's ambition, four business processes with many partners, made a single large
team unwieldy. Splitting into focused groups per business process, with coordination
across groups, proved more efficient. The experience reinforces the need for standard
data definitions that support digital product-passport use cases, as well as practical
tooling for mapping and normalising controller outputs into the container schema.

Next Steps and Recommendations

Immediate priorities are to complete testing, release the ready applications, finalise
agreements with partners, and then update the KPIs on the basis of the integrated solution.
From a sustainability perspective, GF would like to keep the pilot group or an equivalent
collaboration channel active after project close so that partners can access tools,
services, and contacts as needed. In practical terms, the recommendations are to maintain
the edge-cloud plus containerised-apps deployment pattern, pursue standardisation for
synchranisation and digital product-passport-aligned data structures, introduce mapping
tools for controller heterogeneity, and proceed with federated learning for the tool-lifetime
use case while planning quantitative comparisons as KPl updates are executed.

4.3.3 Multi-Plant Predictive ZDM Turbine Production Pilot
(AVIO)-ToBe

Pilot business processes

e Updates on Milestones and Emerging Challenges Since the Initial Survey

The partner caonfirmed that the progress remains positive and highlighted an important
new milestone not captured in the initial survey: the successful deployment of the Alida
solution in Avio's Virtual Private Cloud (VPC) with valuable collaboration and support of ENG.
This step marked a significant evolution from the earlier architectural design phase to an
actual operational implementation within the company's environment. The partner
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emphasized that deploying the solution within their internal infrastructure, rather than
relying on an external setup was a non-trivial task and required considerable effort and
coordination.

e (Overcoming Bottlenecks in Integrating the Reference Architecture into the
Production Environment

The partner explained that the initial plan to use an external infrastructure had to be
revised due to cybersecurity constraints and internal data-sharing policies. As a result,
the team had to reallocate internal resources and engage additional departments that
were not originally part of the project team. On the technical side, ENG played a critical
role in co-designing and adapting components of the architecture to make them
caompatible with Avio's internal systems. This collaborative effort enabled successful
deployment in a real-world, constraint-heavy industrial environment, which the partner
described as a major added value for the project. The ability to implement and scale the
pilot solution in such a setting demonstrates the project’'s effectiveness and real-world
applicahility.

Data Sharing and Integration
e (Challengesin Connecting Data Sources and Managing Production Data Volume

The partner confirmed that progress remained “"Good”, especially considering the
complexity of their environment and the available resources. They noted that finalizing the
caonnection of machines to the infrastructure was particularly challenging, and despite
partial success, thereis still a lack of full automation in the data pipeline. They emphasized
that for some pilots, data was collected directly from machines, while for others, data such
as defect images was uploaded manually for offline analysis. A key challenge highlighted
was the absence of a digital thread, that is, a seamless, connected flow of information
linking data points across systems. The partner explained that while they had data in
various silas, they lacked the relational structure to connect quality notifications to
specific manufacturing steps or machine data. This gap significantly limits their ability to
trace defects or correlate insights across processes, underscoring the need for stronger
data governance and integration frameworks.

e Relevance and Applicability of the ‘Data as a Product’ Concept within the Pilot
Context

The partner noted that while they did not have the opportunity to fully explore this concept
during the project, they recognized its potential value, particularly in contexts where data
exchange with machine OEMs could contribute to collective learning and defect detection
improvements. They also emphasized that even within their own organization, across
geographically distributed plants, data sharing could offer internal value. However, legal,
IP, and export control constraints still pose challenges for such exchanges. When asked
about their experience with the Data Container tool provided by UPV, the partner reiterated
that while its effectiveness far their specific case was limited, it did contribute to improved
data visibility and transparency. They suggested that greater internal data maturity and
stronger data governance practices are prerequisites to fully benefiting from such tools.
The partner emphasized that their current data infrastructure lacks the foundational
layers, such as defined ontologies, metadata, and structured relationships necessary to
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take full advantage of unified APIs and federated data platforms. To illustrate this point,
the partner provided a practical example: although they could collect time-series data
from a machine, it was still difficult to associate that data with a specific part's serial
number or correlate it with quality notifications. This lack of structured metadata and
integrated processes significantly hampers efforts to build a robust digital thread or adopt
tools like the Data Cantainer effectively.

Al Models and Federated Learning

e Updates on the Effectiveness of Federated Learning: Benefits and Challenges
Since the Initial Survey

The partner explained that the neutral rating was largely influenced by data quality
issues. The pilot operates in a high-value, low-volume industrial setting, which means that
the datasets available, particularly for defect detection were small, sparse, and highly
variable. This made it difficult for Al models, including those trained using Federated
Learning, to generate accurate and confident results. The partner emphasized that the low
maturity and inconsistent nature of the available data significantly limited the ability to
demonstrate the added value of the approach. He further noted that although Federated
Learning was used in a third business scenario involving data exchange between
machines, the challenge remained the same, insufficient data structure and consistency.
The lack of meaningful results in this scenario, hawever, was not due to limitations in the
Federated Learning methodology itself, but rather the immature data infrastructure
supporting the pilot. The partner acknowledged the potential of Federated Learning and
viewed the implementation experience as valuable and relevant, despite the technical
difficulties and limitations encountered in practice.

Progress in Integration

e Assessment of the Suitability of the RE4ADY Reference Architecture for the Pilot Use
Case: Suggestions for Adaptation and Improvement

The partner confirmed that the reference architecture was both sufficient and flexible for
their needs. They indicated that no major elements were missing, and that the architecture
provided a solid foundation for implementing their solution. While some components had
to be adapted to fit their internal technological stack and organizational policies,
particularly due to cloud constraints and cybersecurity requirements. These adaptations
were expected and manageable within the framework’s flexible design.

The partner emphasized that the RE4DY architecture functioned as a guiding structure,
which could be customized to align with company-specific needs. For example, certain
identity management or cybersecurity tools included in the reference framework could
not be used as-is due ta internal compliance policies, but this was not seen as a limitation
of the architecture itself. Instead, the partner saw this adaptability as a strength,
confirming that the architecture was efficient and sufficient to meet their pilot's technical
and business requirements.

e Comparisan with Initial AS-1S Results

The analysis of the Performance Dimension, based on both survey responses and
interview insights, highlights significant progress made across key areas, while also
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identifying opportunities for continued development. In Operational and Technical
performance, the pilot specified their initial level as Defined, moving toward the Exploited
level, where AlI/ML models and simulation tools are applied, is underway, though further
work is needed ta enhance data automation and establish a stronger digital thread. In the
Economic dimension, performance is being effectively monitored, and the ambition to
implement predictive financial models is clear. Achieving this will require improvements in
data quality and valume, which the pilot is actively addressing. For Environmental and
Product-Service Lifecycle areas, efforts to move from Managed to Defined show good
momentum. While challenges such as data fragmentation persist, the groundwork has
been laid, making this transition realistic with targeted enhancements. The Social
performance area remains stable at a Defined level, with current tools deemed sufficient
for angoing monitoring. In the Supply Chain dimension, the pilot is progressing well and
aiming to integrate sustainability metrics into existing evaluations. To fully reach the
Integrated level, the focus will be on strengthening data governance and enabling secure,
caompliant data sharing across internal sites.

4.3.4 Multi-Plant Predictive ZDM Turbine Production Pilot
(AVIO)-KPI Discussion

Performance Overview & KPI Progress

After the month-18 review, AVIO narrowed and clarified the KPI set. For the predictive-quality
pilot on machines, the KPI was defined as OEE, with a forecast of a one-percentage-point
increase at machine level. This remains a relevant and conservative expectation, but any
observed OEE movement is difficult to attribute solely to the pilot because shop-floor
teams are continuously improving processes in parallel. Moreover, the team did not
established a clear correlation between machine signals and quality outcomes, so even a
positive OEE trend may be driven by other activities. For the image/defect-recognition
pilots, the KPI comparing algorithm accuracy to operatars has not yet reached parity. The
main reason is data quality: there are few defective examples per class and a large variety
of defect types, so the models have insufficient, imbalanced training data. A separate KPI
anticipated about a 10% reduction in training time via the inspection/training interface; user
interest and early feedback are positive, but formal reductions cannot be claimed because
regulated training hours remain fixed.

Operational Insights

Over the last 12 months, ongoing shop-floor optimizations unrelated to the pilot likely
influenced KPIs, which complicates causal attribution for the OEE metric. A major
operational milestone was deployment of the solution inside AVIO's environment: a chunk
of the Alida stack was installed with ENGINEERING's support and component adaptations.
This shift was driven by cybersecurity and data-sharing constraints that prevented using
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an external platfarm and required reallocation of resources and engagement of additional
internal teams.

Data Callection & Accuracy

Data capture has progressed but still faces last-mile issues. One pilot streamed machine
data, while the imaging pilot relied on capturing pictures with different systems and
uploading them for offline analysis, so end-to-end automation is not yet in place. The most
significant accuracy limitation is a gap in the digital thread: it is hard to link machine time
series to the exact part serial numbers and to the specific operation and guality
notifications, which leaves datasets siloed and weakly cross-referenced. These gaps are
rooted in data-governance maturity, including ontology and cataloguing. Regarding tools
and systems, AVIO can provide a precise list by recanciling the reference architecture with
in-house systems together with the technical lead.

Operators’ Feedback

Operators and manufacturing engineers responded very positively to the interface for
training and inspection support. AVIO is preparing the final shop-floor sessions, and
capturing operator comments in the final deliverable was suggested because the solution
is appreciated even if daily use is not yet established. While the interface likely improves
robustness and knowledge transfer and could reduce practical learning time, regulatory
requirements mean mandated training hours cannot be reduced.

Challenges & Mitigatiaon

Security and data-sharing constraints meant an external platform could not be used; the
team mitigated this by deploying inside the VPC, engaging additional internal teams, and
adapting components with the technology partner’'s support. Last-mile connectivity and
automation of machine-to-platform data flows remain challenging. Digital-thread gaps,
especially linking time series to serial numbers, operations, and quality notifications, limit
analytical power. For vision use cases, limited and imbalanced defect data constrained
model accuracy.

Lessons Learned

Future pilots should prefer simpler, better-instrumented use cases with more examples
per class and fewer defect types to accelerate learning and measurable KPI lift. They
should invest earlier in data governance and management, ontology, catalogues,
ownership, so analytics and any data-container approach rest on solid foundations. They
should also anticipate industrial constraints from day one and plan for on-prem/VPC
deployment when external platforms are unlikely to be permitted.

Next Steps & Recommendations

The immediate priorities are to close the digital thread across MES, quality, and machine
data; to formalize a data-governance program; and to improve model readiness by
enriching the dataset, including exploring synthetic data where appropriate. Given the
successful internal deployment, continuing with a secure-by-design, AVIO-hosted pattern
will reduce future integration friction. Post-project, AVIO does not expect ongoing support
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from the consortium; occasional assistance from the technology partner for running the
internal solution may be requested, but no standing consortium resources are foreseen.
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5 Conclusions

The RE4DY industrial pilots are taking an important step toward manufacturing ecosystems
which have been digitally transformed and powered by Al. The pilots show how to employ
the RE4DY reference framework to integrate cutting-edge digital tools, federated Al
models, and advanced data architectures from the initial stages in several business and
industrial environments. among the most important technological advances are

e The ability to effectively incorporate vendor-specific tool databases and virtual
caoammissioning processes into CAM software

e Federated predictive maintenance systems that respect data privacy while
offering useful insights

e In-process metrology solutions which make adaptive manufacturing more intuitive

e Al-driven defect detection with explainability that boosts both operational quality
and operator training

These implementations result in broad operational benefits, like reduced setup and
inspection times, extended tool lifetime, higher machine uptime, lower maintenance costs,
lower scrap rates, and higher production throughput. The pilots’ KPl assessment illustrates
tangible business impacts: GF Fraisa expects up to 30% tooling cost reductions and 10%
carbaon footprint decreases, alongside a potential increase in machine availability up to
95%. Avio Aero reports a 44% reduction in quality control time, significant enhancements
in defect detection accuracy, a 25% reduction in training hours, and positive OEE trends on
EDM machines. These results underscore the practical value of federated learning and Al
within industrial environments, while simultaneously identifying challenges related to
dataset quality, system integration, and regulatory compliance that require continued
attention. The BP performance methodology proves effective for monitoring digital
maturity and guiding transformational strategies. While current maturity ranges from
managed to integrated across dimensions such as Operational-Technical, Economic,
Environmental, and Supply Chain, the outlook targets full exploitation where Al-powered
decision making, lifecycle sustainability assessments, and seamless data interoperability
are embedded in daily operations. This requires further standardization efforts, enhanced
data synchronization, stronger digital threads, and scalable edge-cloud federated
solutions.

Looking ahead, the RE4DY pilots lay a robust foundation for extending Al-driven digital
transformation across broader industrial sectors and supply chains. Future initiatives
should focus on scaling federated learning infrastructures, enriching and diversifying
datasets, advancing annotation and data governance practices, and driving regulatory
acceptance of Al-assisted inspection and training processes. Continued partnership and
knowledge sharing amaong technological, industrial, and academic stakeholders will
accelerate the realization of smarter, more sustainable, and highly competitive
manufacturing enterprises in the digital age.
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O Annex 1

Ist Iteration of analysis - (AS-IS situation)®

Dear Partners,

The 6Ps methodology is a comprehensive tool designed to aid enterprises in their
digital transformation journey by thoroughly analyzing six key dimensions: product,
process, platform, people, partnership, and performance. This methodology
emphasizes the importance of enhancing both technical and socio-business

aspects to achieve successful digital transformation.

For our survey, we are focusing solely on the Performance dimension. This pilot
experiment will compare the initial and final performance levels to measure the

impact on the company's production process.

The survey includes a series of multiple-choice questions specifically tailored to

assess the Performance dimension.

As the project approaches its conclusion, participants will need to indicate their

initial status before the project (As-1s) and the actual situation (To-Be).

The full compilation of the survey will take you approximately 15 minutes overall,

but youre allowed to save your partial compilation and reprehend it after a while.

® Survey link: https://polimi.eu.qualtrics.com/jfe/farm/SV_3JcrkAaAeymKx2S
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The RE4DY project team will process the results of the survey only
in order to draft a report. Your privacy, personal and company
data protection will be guaranteed in conformity with the
European Regulation (EU) 2016/679. Your data will be processed
in a separate database from the results of the survey in order to
guarantee the anonymity of the survey and will not link your data
with other databases. For more information regarding the
processing of your data, you can visit here.

O Agree

FIRST NAME

LAST NAME

E-MAIL

COMPANY
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PERFORMANCE

Performance dimension aims at investigating what is the AS-IS status
before the project and the desired level of control over your company's

processes and activities.

(O COMPILE THE PERFORMANCE SURVEY

(O GO TO THE Conclusion

OPERATIONAL/ TECHNICAL

What approach does your company adopt for measuring operational performances (e.g. OEE)?

. INITIAL: Operational performance is often not measured or understood

2. MANAGED: Descriptive Performance - Measurement and analysis of business KPIs are largely retrospective

3A DEFINED: Diagnostic Performance - Measurement of KPIs is clear. Attempt to understand the causes that
affects events and behaviours

4. INTEGRATED: Predictive Performance - Measurement of KPIs is prospective. Statistical models are used to
forecast and to understand the KPIs predictions

5. EXPLOITED: Prescriptive Performance — future-oriented. Optimization and simulation to find the best course of

action and operational KPIs measurement. AI/ML models are used to forecast and to understand the KPIs

predictions

OO0OO0OO0OO0O0
O 00000
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ECONOMIC

What approach does your company adopt for measuring economic performances (e.g. ROI)?

]. INITIAL: Economic performance is often not measured or understood
2. MANAGED: Descriptive — Measurement of economic KPIs is largely retrospective
3. DEFINED: Diagnostic - Measurement of economic KPIs is clear. Attempt to understand the causes of events
and behaviours
4. INTEGRATED: Predictive - Measurement of economic KPlIs is prospective. Statistical models and forecasts
techniques to understand the KPIs predictions
5. EXPLOITED: Prescriptive — future-oriented. An Al decision-making support system boosting optimization

exploits simulation and allows to find the best course of actions and operational KPls measurement

INITIAL

MANAGED

O O0OOO0OO0O0

Applicable

ENVIRONMENTAL

What approach does your company adopt for measuring environmental performances (e.g. water consumption per

product, energy optimisation) ?

. INITIAL: Environmental performance is often not measured or understood

2. MANAGED: Descriptive — Measurement of environmental KPls is largely retrospective

3. DEFINED: Diagnostic - Measurement of environmental KPIs is clear. We attempt to understand the causes of
events and behaviours

4. INTEGRATED: Predictive - Measurement of environmental KPls is prospective. Al and/or statistical models are
used to forecast environmental performances

5. EXPLOITED: Prescriptive — future-oriented. An Al decision-making support system boosting optimization

exploits simulation and allows to find the best course of action and environmental KPIs measurement

INITIA O O
MANAGED O O
DEFINED O O
INTEGRATED O @
EXPLOITED O O
Not Applicable O O
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SOCIAL

What approach does your company adopt for measuring social performances (e.g. welfare for employees)?

. INITIAL: Social performance is often not measured or understood

. MANAGED: Descriptive - Measurement of social KPIs is largely retrospective

3. DEFINED: Diagnostic - Measurement of social KPlIs is clear. Attempt to understand the causes of events and
behaviours

4. INTEGRATED: Predictive - Measurement of social KPlIs is prospective. Al and/or statistical models are used to
forecast social performances

5. EXPLOITED: Prescriptive — future-oriented. An Al decision-making support system boosting optimization

exploits simulation and allows to find the best course of action and environmental KPls measurement

AS-IS O-BE

DEFINED

EXPLOITED

OO0OO0O0OO0O0
OO0OO0OO0OO0O0

Not Applicable

PRODUCT-SERVICE LIFECYCLE

Which dimensions of analysis are taken into account in the assessment of lifecycle of the products/services offered to

the customers?

]. INITIAL: No product life cycle assessment
2. MANAGED: A few life-cycle aspects are included in some KPIs, but occasionally
3. DEFINED: Life Cycle Costing (LCC) towards recycling, re-use, de- re-manufacturing KPls
4. INTEGRATED: Life Cycle Costing + Environmental LCA towards Circular Economy

5. EXPLOITED: Life Cycle Costing + Environmental LCA + Social LCA towards Sustainability and Green Deal

AS-IS TO-BE
INITIAL O O
MANAGED O O
DEFINED O @)
INTEGRATED @) O
EXPLOITED O @)
Not Applicable O @)
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SUPPLY CHAIN

Which dimensions of analysis are taken into account for the overall evaluation of your company’s supply chain?

]. INITIAL: The Supply Chain performances are lowly monitored/measured.
2. MANAGED: We measure only the most important physical performance of suppliers (e.g. punctuality, quality,
operational flexibility)
3. DEFINED: We measure physical and economical performances (purchase price, non-quality costs, delivery
delays, lack of flexibility, etc.).
4. INTEGRATED: We measure physical and economical performances, and sustainability indexes.
5. EXPLOITED: We measure physical and economical performances, sustainability indexes and cross-company

value creation.

AS-IS TO-BE
INITIAL O O
MANAGED O O
DEFINED O O
INTEGRATED O O
EXPLOITED O O
Not Applicable O O

Pilot business processes

How would you rate the progress in achieving objectives for process planning and

preparation?
Rate
Excellent O
Good O
Average O
o)
nsufficient O

What key milestones have been reached in process planning and
preporc}tion? (Please list any significant achievements)
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What challenges or bottlenecks have you encountered in
implementing process planning and preparation? (piease speciy)

Data Sharing and Integration
How would you rate the progress in connecting data sources and synchronizing data at

your site on the dedicated Data Container?

Rate
Excellent Progress O
Good Progress O
Average Progress O
Poor Progress O

What challenges have you faced in the data sharing and integration process?

Challenges

Difficulty connecting
data sources

Issues with data
synchronization

Concerns about data
security and privacy

@)

Lack of resources or
expertise

©)

Other challenges
(please specify)

@)
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OTHER CHALLENGES

How effective has the Data Container been in enabling data exchange and services

implementation?

Very effective O

Somewhat effective

Not very effective

O
Neutral O
O
O

Not at all effective

What benefits have you seen from using the Data Container for data sharing and

integration?

d data visibility

nhanced data-driven O

aecision mc kll'g'l

OTHER BENEFITS
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Al Models and Federated Learning

How would you rate the progress in leveraging on Federated Learning at your site?

Rate

O

Excellent progre

Good progress

Average progress

Poor progress

O OO0O0

Insufficient progress

How effective has the Federated Learning approach been in enhancing Al models?

Very effective

Somewhat eff

Neutra

Not very effective

O
O
O
O
O

Not at all effective

What benefits have you observed from implementing Federated Learning? (Select all that

apply)
Benefits
Enhanced data
privacy g
Reduced data transfer D
No significant benefits 0

What challenges have you faced in implementing Federated Learning? (Select all that

apply)
Challenges

Technical difficulties in D

deployment

Data privacy concerns

Lack of expertise

O 0O OO
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Are there any other comments or feedback you would like to

provide regarding Al models and Federated Learning in the RE4DY
pilot?

Progress in Integration
How would you rate the progress in integrating the RE4DY components and achieving the

planned objectives at your pilot site?

Rate
Excellent O
Good O
O
O
Insufficient O

Which of the following key achievements have been reached at your pilot site? (Select all

that apply)

Achieverments

Successful connection

the O

of data sources to
Data Container

Implementation of

predictive D

maintenance solutions

Development of digital

S tools and D

machines

Compiletion of

synchronization tasks

None of the above
p 4 (I
(please specify)

None of the above (please specify)
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What are the main challenges and roadblocks you have encountered in implementing the

pilot at your site? (Select all that apply)

Challenges

Technical difficulties D
with data integration

Insufficient resources
or expertise

Resistance to change
from staff

Issues with data
quality or availability

No significant
challenges faced

o O O O

Are there any other comments or feedback you would like to
provide regarding the integration of RE4ADY components at your
pilot site?

In the next page, you can find a summary of your responses.
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/ Annex ?

KPIs Interview Questions
Performance Overview & KPI Progress

e Which KPIs from D4.2 have improved since M24, and by how much? (E.g. percentage
increase in yield, efficiency, uptime.)

e Are there any KPIs that have not met expected targets? What factors contributed to
this?

Operational Insights

e What operational changes or process improvements have impacted KPIs during the
last 12 months of the pilot?

e Can you highlight any incidents or disruptions that tempararily affected performance
metrics?

Data Callection & Accuracy

e Howreliable andtimely has the data capture process been? Have there been any data
gaps or quality issues?

e Which monitoring tools or systems provided the most valuable data for KPI monitoring?
Operators’ Feedback

e Whatinsights did you gather from operators (via surveys or interviews) that influenced
KPl outcomes?

e FEngagement with operators: how did their feedback shape operational adjustments?
Challenges & Mitigatian

e What key challenges have you encountered since M24, and how have you addressed
them?

e What lessons learned would you highlight to improve process operations for future
pilots?

Next Steps & Recommendations
e Based on current KPI performance, what are your priorities going forward?

e Arethere any support actions (resources, training, tools) required from the consortium
to maintain or further improve performance?
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